Detailed Design

Requested by: Ken Swarner System Administrator Siena College Computer Science Department

TCP/IP Packet Descriptor

Paradigm Solutions

Prepared by:

Jonathan Baker, Team Leader Ryan Fischer Mike Sebast Justin Waterman Jim DeSario Mark Mossman

February 28, 2005

Detailed Design Table of Contents

Section 1:	External Design Specifications				
	Section 1.1:	User Displays4			
	Section 1.2:	Detailed Data Flow Diagrams18			
	Section 1.3:	Hardware, Software, and Human Interfaces23			
Section 2:	Architectural Desig	gn Specification			
	Section 2.1:	User Commands24			
	Section 2.2:	Functional Descriptions26			
	Section 2.2.0:	Ethernet PDU for the selected FTP PDU26			
	Section 2.2.1:	IP PDU for the selected FTP PDU32			
	Section 2.2.2:	TCP PDU for the selected FTP PDU45			
	Section 2.2.3:	FTP PDU for the selected FTP PDU56			
	Section 2.2.4:	IP PDU for the selected ICMP PDU58			
	Section 2.2.5:	ICMP PDU for the selected ICMP PDU71			
	Section 2.2.6:	IP PDU for the selected SMTP PDU79			
	Section 2.2.7:	TCP PDU for the selected SMTP PDU92			
	Section 2.2.8:	SMTP PDU for the selected SMTP PDU103			
	Section 2.2.9:	IP PDU for the selected HTTP PDU106			
	Section 2.2.10:	TCP PDU for the selected HTTP PDU120			
	Section 2.2.11:	HTTP PDU for the selected HTTP PDU131			
	Section 2.2.12:	IP PDU for the selected SSH PDU147			
	Section 2.2.13:	TCP PDU for the selected SSH PDU159			
	Section 2.2.14:	IP PDU for the selected TELNET PDU168			

	Section 2.2.15:	TCP PDU for the selected TELNET PD	OU181
	Section 2.2.16:	TELNET PDU for the selected TELNET Pl	DU192
	Section 2.2.17:	ARP PDU for the selected ARP PDU	193
	Section 2.2.18:	IP PDU for the selected UPD PDU	206
Section 3:	Data Storage		225
	Section 3.1:	Naming Convention	225
	Section 3.2:	Physical Location of Data	225
Section 4:	Testing Requirem	ents	226
	Section 4.1:	Testing Specifications	227
	Section 4.2:	Testing Forms	230
Section 5:	Appendix		238
	Section 5.1:	Glossary	238
	Section 5.2:	Gantt Chart	240

1.0 External Design Specifications

1.1 User displays

In order to effectively portray the user displays, the following pages contain a pictorial representation of a user navigating through the HTTP protocol selection. After each picture there is a brief summary of what the user would have selected in order to make each screen appear.

This is the first screen that the user will see when he logs onto the program. This screen consists of a protocol tree in the middle, with an accompanying Ethernet stack to the right of it, measuring where each protocol lies in the tree. Additionally, we have an Ethernet frame at the top of the screen that displays information about the destination, source, and other information about it. Any button when selected will cause the box at the bottom to display topic information about what was selected. Also there is a history page link in the bottom right corner, which upon clicking will bring the user to a history page with previous teams web pages. The history page link is a uniform feature throughout the screens.

✓ G.

History of the TCP/IP Packet Descriptor

The purpose of the TCP/IP Packet Descriptor is to create an educational tool that displays and interprets the contents of a packet in a graphical and meaniful way.

Requested by: Ken Swarner, System Administrator, Siena College

Mirage Incorporated, established 2003-04

<u>Blue Technologies, established 2003-04</u>

Paradigm Solutions, established 2004-05

Back

This is the history page that the user will be sent to if the icon is selected. The user can click on any previous teams link to view their homepages, to return to the previous screen the user clicks on the back button.

In the middle of the screen is a protocol tree, which the user may select any of the nonshaded out protocols to display a list of data sessions. In this example, the HTTP protocol was selected, and a drop-down menu of data sessions has appeared. The user then scrolls to the particular data field that he is interested in, and then clicks on it to take him or her to the Packet Selection screen.

The user can scroll down the list using the scroll bar. This screen shows the user had scrolled down to view other data sessions.

When the user moves the mouse over a data session, the session becomes highlighted. The data session then becomes un-highlighted when the mouse moves off of the data session. This screen shows the mouse highlighting a particular data session. The user would click the highlighted data session to advance to the Packet Selection screen.

192 168 130 1 132,168,130,1 132,168,130,1 132,168,130,1 132,168,130,1 132,168,130,1	HTTP Continuation HTTP Continuation HTTP Continuation HTTP Continuation			
192,168,130,1 192,168,130,1 192,168,130,1 192,168,130,1	HTTP Continuation HTTP Continuation HTTP Continuation			
132,168,190,1 132,168,130,1 132,168,130,1	HIP Continuation HTP Continuation			
132,158,150,1	Hilf Continuation			
	MTTP Conditionalises			
490 409 420 4	Hilf Continuation			
192 168 120 1	WTP Continuation			
192.168.130.1	HTP Continuation			
192.168.130.1	HTTP Continuation			
192,168,130,1	HTTP Continuation			
192,168,130,1	HTTP Continuation			
192,168,130,1	HTTP Continuation			
192,168,130,1	HTTP Continuation			
192.168.130.1	HTIP Continuation			
	182,168,130,1 182,168,130,1 182,168,130,1 182,168,130,1 182,168,130,1 182,168,130,1 182,168,130,1 182,168,130,1 182,168,130,1	182,168,130,1 HTP Continuation 182,168,130,1 HTP Continuation	182,168,130,1 HTP Continuation 182,168,130,1 HTP Continuation	182.168.130.1 HTP Continuation 182.168.130.1 HTP Continuation

This is a Packet Selection Screen as the user first sees it. Its title at the top reflects the protocol that was selected. From before, the HTTP protocol was selected. The box in the middle of the screen displays the different packets of the selected protocol as well as other relevant information about the packet. The screen is initialized to highlight the topmost packet, which is the default packet. Above this, we have repeated the data session name for the data session that was selected from the Protocol Selector screen. There are two buttons below this packet box: a View Packet Button, which takes you to the Information Display Screen and display the highlighted packet; and a Choose Protocol Button, which when clicked returns you to the Protocol Selection Screen. Additionally the user can display the contents of a packet by double clicking the packet on this screen.

10.	Time	Source	Destination	dia	
27	21/9 91/147	230,000,230,1	190,163,170,1	HTP Continuation	
200	2150 000001	199 168 120 1	192, 163, 130, 1	HTTP Continuation	
20 27	2002 472067	217 34 129 17	192,153,130,1	HTTP Continuation	
28	3273, 644453	192.168.255.252	192,158,130,1	HTTP Continuation	
28	3312,758063	192,168,130,1	192,158,130,1	HTTP Continuation	
30	3325, \$38960	192,168,130,4	192,158,130,1	HTTP Continuation	
31	3374,533087	192.168.295.292	192,158,130,1	HTTP Continuation	
22	3412,878161	192.168.295.292	192.158.130.1	HTTP Continuation	
33	3452,529458	192.168,255,252	192,158,130,1	HTTP Continuation	
34	3473,018229	152.168.255.252	192,153,130,1	HTTP Continuation	
35	3439,314876	192,168,130,1	192,158,130,1	HTTP Continuation	
36	35/15.,579999	192,168,255,252	192,168,130,1	HTTP Continuation	
37	3508,631714	192,168,130,4	192,158,130,1	HTTP Continuation	
38	3524,638527	192,168,255,252	132,168,130,1	HTTP Continuation	0.20
33	3550,648523	152,168,150,1	132,153,255,252	HTTP NTTP/1,1 408 Access Forbidden	
				Mew Parket Choose	

If there are more packets in the data session than the box is capable of displaying, the scroll bar on the right allows the user to scroll through the different packets available in the data session. This is an example of the user scrolling to see more packets. The user can highlight a particular packet by clicking on its row. This action will un-highlight the previously highlighted packet. Clicking on a currently highlighted packet does nothing. This screen demonstrates the highlighting of a packet other than the default packet.

This is the Information Display Screen. This screen displays the contents of the packet that was selected in the Packet Selector Screen. The two buttons on the upper left, the Choose Packet Button and the Choose Protocol Button, bring the user to the Packet Selector Screen and the Protocol Selection Screen, respectively. There are tabs that would allow the user to traverse the protocol tree, less the Ethernet root. Since, in this example the user had selected an HTTP packet; the tabs at the bottom of the screen are IP, TCP, and HTTP. Everything on this screen except for the packet fields is geographically static, that is they will not change in size or location on this screen. The user first sees the highest level of protocol, in this case HTTP. This is the screen as the user first sees it. The protocol stack in the upper right corner allows the user to navigate through the different protocols within the protocol hierarchy. At the top of the screen there is an Ethernet Frame that is now filled with data.

Clicking on any of the fields' causes the program to display both information about the field and the data contained in that field in the Information Box, located on the left of the screen. This is an example of the user clicking on the Type of Service field.

This is an example of the user selecting the TCP protocol, as the user first sees it. The information box displays the selected packet's TCP protocol information.

Clicking on a different field clears out the information box and displays the information of the newly selected field. This is an example of the user selecting Source Port Number field.

Ethernet Fr	ame]	RFC - 0894	HTTP			
Destination MAC Add	MAC Address						
Choose Packet Protocol	HTTP	PDU 8 9 10 11 12 13 14 15	16 17 18 19 20 21 22	FC-2616 23 24 25 26 27 28 29 30 31			
HTTP Session		K	1 P	3			
		Date					
IP > TCP > HTTP	4	5	6	,			
The excitence for moving humaniant		Sr	CMT .				
files across the Internet Requires a	· ·		10				
HTTP client program on one end.			Nectors 14	16			
and an HTTP server program on		Centr	at Type				
the other end. HTTP is the most	н	17	н	1)			
important protocol used in the	CarriageRet	urn / Neutine		Data			
World Wide Web .	Я	21	22	22			
		Data Continue					
	24	25	<u>N</u>	2			
				FSS Hatoy Page			

The user went to the HTTP protocol, the information box displays information about the HTTP protocol.

Ethernet F	rame	RFC - 0894	HTTP
Destination MAC Ad	ddress Source MAC Address Source MAC Address	tdress Length	
Choose Packet Protocol	HTTP PDU 0 1 2 3 4 5 6 7 8 9 10	RF 11 12 13 14 15 16 17 18 19 20 21 22	C-2616 23 24 25 26 27 28 29 30 31
HTTP Session		KTTP	
IP >TCP > HTTP		Date	· · · · ·
	4	5 6	,
нттрро		Server	
Hex	· · · · ·	i ii	"
48 54 50 2F 31 2E 31 20 34		CORRECTOR	16
20 4E 6F 74 20 46 6F 75 6E		Cantent Type	17
64 UD UA	14	17 16	Ð
8-bit ASCII	CarriageReturn / Neuline		Data
HTTP/1 404 Not Found*	28	32 32	22
		Data Centinue	
Start bit: 0 Length: 48 octets Header field consists of a name followed by a colon(".")and the field value. Field names are case-insensitive.		. <u> </u>	PSS Hanoy Page

The user selected the HTTP PDU field. The information box displays the information within that field.

1.2 Detailed Data Flow Diagrams

Key:

- \Box Source/Sink
- — Process
- = Data Stores
- \rightarrow Data Flow

Context Diagram

Level 0 Diagram

Level 1 Diagram

Packet Selector

Level 2 Diagram

Protocol Selector

Level 3 Diagram

Information Display

1.3 Hardware, Software and Human Interfaces

The prototype was developed and designed using Macromedia Fireworks and Adobe Photoshop graphic design programs.

The program will be written in HTML and PHP using the Macromedia Studio MX Suite of web design tools. Other Linux based code editing tools may be used.

The TCP/IP Packet Descriptor program will be hosted as a web site on the Siena College Computer Science Department's Oraserv Linux server (Red Hat version 7.1), running the Apache web server (version 1.3.19) and PHP (version 4.1.2).

The program will be compatible with any Netscape Navigator 7.x or greater, Internet Explorer 5.x or greater, Firefox 1.x or greater, and Mozilla 1.7.x or greater web browsers.

2.0 Architectural Design Specification

2.1 User Commands

Active Protocols (those that the user can select) – File Transfer Protocol (FTP) Simple Mail Transfer Protocol (SMTP) Hyper Text Transfer Protocol (HTTP) Terminal Emulation Protocol (TELNET) Address Resolution Protocol (ARP) Secure Shell (SSH) Internet Control Message Protocol (ICMP) User Datagram Protocol (UDP)

<u>Inactive Protocols (</u>those that show up in the protocol hierarchy, but cannot be chosen for viewing) – Simple Network Management Protocol (SNMP) Secure Control Protocol (SCP) Dynamic Host Configuration Protocol (DHCP) Domain Name Service (DNS) Resource Reservation Protocol (RSVP) Lightweight Directory Access Protocol (LDAP) Network Time Protocol (NTP)

<u>Choose Protocol</u>- The "Choose Protocol" function will display a hierarchical tree of available protocols. Each node of the tree will be a link to display that particular protocol.

<u>Protocol Fields</u>- Each field will be a link. When selected it will be highlighted and the Information of that field will be shown in an information box to the left of the PDU.

<u>Team Logos</u> – Each logo will be a link that, when selected, will take the user to that team's website.

<u>View Packet</u> – This command is given from the Packet Selector screen by pressing the View Packet button. Here, it will bring up the Information Display screen, displaying the highlighted packet.

<u>Choose Protocol</u> – This button in on both the Packet Selector Screen and the Information Display screen. This command will take the user back to the Protocol Selection screen.

<u>Choose Packet</u> – This command is executed when the user presses the Choose Packet button on the Information Display screen. This allows the user to select a different packet from within the current data session.

<u>Packet Select</u> – On the Packet Selector screen, there will be a display of all the packets within the current data session. The user can select the row that they wish to view by clicking on the row that contains that packet. Note that this

does not bring up the Information Display screen, but rather indicates which packet will be displayed when the user selects the View Packet button.

<u>Data Session Select</u> – After the user clicks on their desired protocol, a drop down menu will appear displaying all the data sessions that have been stored in a folder to be specified later by our client, Mr. Swarner. The user then clicks on the data session that they would like to view. The act of selecting takes them to the Packet Selector screen.

<u>Request for Comments Link</u> – Each PDU will have a link to a web site with extensive information about the selected protocol.

2.2 Functional Descriptions

2.2.0 Ethernet PDU for the selected FTP PDU

Hex Dump:

		-					
00	01	03	1e	e2	24	00	00
f8	1f	00	85	08	00	45	10
00	45	AA	41	40	00	40	06
0e	85	c 0	a8	00	27	c0	a8
00	65	80	30	00	15	81	a5
16	6c	87	a3	53	5d	80	18
16	d0	11	f4	00	00	01	01
08	0a	1b	25	f3	a1	0b	dd
73	58	50	41	53	53	20	66
31	61	32	6b	33	75	73	65
72	0d	0a					

Ethernet PDU > *Preamble* for the selected FTP PDU

Field Name: Preamble

Description: Repeating bit sequence (10101010...) used to determine clock synchronization between transmitting and receiving stations

Data value (hexadecimal): AAAAAAAAAAAAAA

Data values in other bases: Not applicable

Start Bit: Pre-Packet

Ethernet PDU > *Start of Frame (Sof)* for the selected FTP PDU

Field Name: Start of Frame (Sof)

Description: Marks the beginning of the Ethernet Frame

Data value (decimal): 171

Data values in other bases:

Hexadecimal	А	В
Binary	1010	1011

Start Bit: Pre-Packet

Ethernet PDU > *Destination MAC Address* for the selected FTP PDU

Field Name: Destination MAC Address

Description: 48 bit destination node address, specifying the station(s) for which the frame is intended. It may be an individual or multicast (including broadcast) address.

The LSB of 48-bit Ethernet addresses will be 0 if the frame is single cast (meant for a specific node) or 1 if it is multicast (broadcast to multiple nodes). Individual nodes on a network determine whether they need to participate in a multicast, and either receive or ignore the frame

Data value (hexadecimal): 00 : 01 : 03 : 1E : E2 : 24

Data values in other bases: Not applicable

Start Bit: 0

Ethernet PDU > *Source MAC Address* for the selected FTP PDU

Field Name: Source MAC Address

Description: 48 bit source node address, specifying the station sending the frame. The Source Address field is not interpreted by the CSMA/CD MAC sublayer

Data value (hexadecimal): 00 : 00 : F8 : 1F : 00 : 85

Data values in other bases: Not applicable

<u>Start Bit</u>: 48

Ethernet PDU > *Length* for the selected FTP PDU

Field Name: Length

Description: The Length field is a 2-octet field whose value indicates the number of LLC data octets in the data field. If the value is less than the minimum required for proper operation of the protocol, a PAD field (a sequence of octets) will be added at the end of the data field but prior to the FCS field. The length field is transmitted and received with the high order octet first.

Data value (decimal): 2048

Data values in other bases:

Hexadecimal	0	8	0	0
Binary	0000	1000	0000	0000

Start Bit: 96

Ethernet PDU > *Cyclic Redundancy Check (CRC)* for the selected FTP PDU

Field Name: Cyclic Redundancy Check (CRC)

Description: Calculation to determine if any bit errors occurred to the packet during transmission

Data value (hexadecimal): FFFF

Data values in other bases: Not applicable

Start Bit: Post-packet

2.2.1 IP PDU for the selected FTP PDU

IP PDU > *IP Version* for the selected FTP PDU

Field Name: IP Version

Description: IP Version is a 4-bit field that indicates the format of the Internet header

Data value (decimal): 4

Data values in other bases:

Hexadecimal	4
Binary	0100

Start Bit: 0

IP PDU > *Header Length* for the selected **FTP PDU**

Field Name: Header Length

Description: The Header Length field is a 4-bit field indicating the length of the Internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5 (20 bytes) and the maximum value is 15 (60 bytes).

Data value (decimal): 5

Data values in other bases:

Hexadecimal	0	5
Binary	0000	0101

Start Bit: 4

IP PDU > *Type of Service* for the selected FTP PDU

Field Name: *Type of Service*

Description: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a data gram through a particular network.

The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

Bits 0-2: Precedence	
Bit 3: (D) $0 =$ Normal Delay	1 = Low Delay
Bit 4: (T) 0 = Normal Throughput	1 = High Throughput
Bit 5: (R) $0 =$ Normal Reliability	1 = High Reliability

Precedence:

111 = Network Control	011 = Flash
110 = Inter-network Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Overridden	000 = Routine

Data value (decimal): 16

Data values in other bases:

Hexadecimal	1	0
Binary	0001	0000

Start Bit: 8

IP PDU > *Total Length* for the selected **FTP PDU**

Field Name: Total Length

Description: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including Internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Data values (decimal): 69

Data values in other bases:

Hexadecimal	0	0	4	5
Binary	0000	0000	0100	0101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 69 in hexadecimal

Start Bit: 16

IP PDU > *Identification* for the selected FTP PDU

Field Name: Identification

Description: Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a data gram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the data gram or any fragment could be alive in the Internet.

Data value (decimal): 43585

Data values in other bases:

Hexadecimal	А	А	4	1
Binary	1010	1010	0100	0001

Start Bit: 32
IP PDU > *Flags* for the selected FTP PDU

Field Name: Flags

Description: Flags is a 3-bit field that indicates directions for fragmentation.

Bit 0: reserved, must be 0	
Bit 1: (DF) 0 = May Fragment	1 = Don't Fragment
Bit 2: (MF) $0 = \text{Last Fragment}$	1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

Start Bit: 48

IP PDU > *Fragment Offset* for the selected FTP PDU

Field Name: Fragment Offset

Description: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0	0	0
Binary	0000	0000	0000	0000

Start Bit: 51

IP PDU > *Time to Live* for the selected FTP PDU

Field Name: Time to Live

Description: Time to Live is an 8-bit field that indicates the maximum time the data ram is allowed to remain in the Internet. If this field contains the value 0, then the data gram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the data gram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum data gram lifetime.

Data value (decimal): 64

Data values in other bases:

Hexadecimal	4	0
Binary	0100	0000

Start Bit: 64

IP PDU > *Protocol* for the selected **FTP PDU**

Field Name: Protocol

Description: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

Dec	Hex	Protocol	Dec	Hex	Protocol
0	00	Reserved	22	16	Multiplexing
1	01	ICMP	23	17	DCN
2	02	Unassigned	24	18	TAC Monitoring
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network
5	05	ST	100	64	SATNET and
					Backroom EXPAK
6	06	TCP	101	65	MIT Subnet
					Support
7	07	UCL	102-104	66-68	Unassigned
10	0A	Unassigned	105	69	SATNET
					Monitoring
11	0B	Secure	106	6A	Unassigned
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core
					Utility
13	0D	NVP	110-113	6E-71	Unassigned
14	0 E	PUP	114	72	Backroom SATNET
					Monitoring
15	0F	Pluribus	115	73	Unassigned
16	10	Telnet	116	74	WIDEBAND
					Monitoring
17	11	XNET	117	75	WIDEBAND
					EXPAK
20	14	Chaos	120-376	78-0178	Unassigned
21	15	User Data gram	377	0179	Reserved

Data value (decimal): 6

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110

Start Bit: 72

Length: 8

RFC Link: <u>http://www.faqs.org/rfcs/rfc790.html</u>

IP PDU > *Header Checksum* for the selected FTP PDU

Field Name: Header Checksum

Description: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Data value (decimal): 3717

Data values in other bases:

Hexadecimal	0	Е	8	5
Binary	0000	1110	1000	0101

Start Bit: 80

IP PDU > *Source IP Address* for the selected FTP PDU

Field Name: Source IP Address

Description: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Data value (decimal): 192.168.0.39

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	2	7
Binary	1100	0000	1010	1000	0000	0000	0010	0111

Start Bit: 96

IP PDU > Destination IP Address for the selected FTP PDU

Field Name: Destination IP Address

Description: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Data value (decimal): 192.168.0.101

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101

Start Bit: 128

IP PDU > *Options* for the selected **FTP PDU**

Field Name: Options

Description: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type

Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Some example options are:

0 End of Options list 1 No operation (pad) 7 Record route 68 Timestamp 131 Loose source route 137 Strict source route

Data values: Not applicable

Data values in other bases: Not applicable

Start Bit: 160

Length: Variable (0-40 bytes)

2.2.2 TCP PDU for the selected FTP PDU

IP > TCP PDU > Source Port Number for the selected FTP PDU

Field Name: Source Port Number

Description: A 16-bit address assigned by the sending computer that represents the name of the application that sent the data in the IP packet.

Common TCP Well-Known Server Ports (Decimal):

7 echo	110	pop3
19 chargen	111	sunrpc
20 ftp-data	119	nntp
21 ftp-control	139	netbios-ssn
22 ssh	143	imap
23 telnet	179	bgp
25 smtp	389	ldap
53 domain	443	https (ssl)
79 finger	445	microsoft-ds
80 http	1080	socks

Data value (decimal): 32816

Data values in other bases:

Hexadecimal	8	0	3	0
Binary	1000	0000	0011	0000

Start Bit: 0

IP > TCP PDU > *Destination Port Number* for the selected **FTP PDU**

Field Name: Destination Port Number

Description: This 16-bit number represents the name of the application that is to receive the data contained within the IP packet. This is one of the major differences between a Layer 3 and a Layer 4 header: the Layer 3 header contains the IP address of the computer that is to receive the IP packet; once that packet has been received, the port address in the Layer 4 header ensures that the data contained within that IP packet is passed to the correct application on that computer.

Common TCP Well-Known Server Ports (Decimal):

7 echo	110	pop3
19 chargen	111	sunrpc
20 ftp-data	119	nntp
21 ftp-control	139	netbios-ssn
22 ssh	143	imap
23 telnet	179	bgp
25 smtp	389	ldap
53 domain	443	https (ssl)
79 finger	445	microsoft-ds
80 http	1080	socks

This key indicates assigned port number values:

DecPort Numbers0Reserved1-32767Internet registered ("well-known") protocols32768-98303Reserved, to allow TCPv7-TCPv4 conversion98304 & upDynamic assignment

Data value (decimal): 21 (indicates FTP)

Data values in other bases:

Hexadecimal	0	0	1	5
Binary	0000	0000	0001	0101

Start Bit: 16

Length: 16

Source: http://www.zvon.org/tmRFC/RFC1475/Output/chapter4.html

IP > TCP PDU > *Sequence Number* for the selected FTP PDU

Field Name: Sequence Number

Description: TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Data value (decimal): 2175080044

Data values in other bases:

Hexadecimal	8	1	А	5	1	6	6	С
Binary	1000	0001	1010	0101	0001	0110	0110	1100

Start Bit: 32

IP > TCP PDU > *Acknowledgement Number* for the selected FTP PDU

Field Name: Acknowledgement Number

Description: This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Data value (decimal): 2275627869

Data values in other bases:

Hexadecimal	8	7	Α	3	5	3	5	D
Binary	1000	0111	1010	0011	0101	0011	0101	1101

<u>Start Bit</u>: 64

IP > TCP PDU > *Length* for the selected **FTP PDU**

Field Name: Length

Description: This is identical in concept to the header length in an IP packet, except this time it indicates the length of the TCP header. The minimum value of a correct header is 5 (20 bytes) and the maximum value is 15 (60 bytes).

Data value (decimal): 8

Data values in other bases:

Hexadecimal	0	8
Binary	0000	1000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 128 in decimal

Start Bit: 96

IP > TCP PDU > *Reserved* for the selected FTP PDU

Field Name: Reserved

Description: These 6 bits are unused and are always set to 0.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0	0	0	0	0
Binary	0000	0000	0000	0000	0000	0000

Start Bit: 100

IP > TCP PDU > *Flags* **for the selected FTP PDU**

Field Name: Flags

Description: Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Flags: U A P R S F U (1 = Urgent pointer valid) A (1 = Acknowledgement field value valid) P (1 = Push data) R (1 = Reset connection) S (1 = Synchronize sequence numbers) F (1 = no more data; Finish connection)}

Data value (binary): 01 1000

Data values in other bases: Not applicable

Start Bit: 106

IP > TCP PDU > *Window Size* for the selected **FTP PDU**

Field Name: Window Size

Description: Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Data value (decimal): 5840

Data values in other bases:

Hexadecimal	1	6	D	0
Binary	0001	0110	1101	000

Start Bit: 112

IP > TCP PDU > *TCP Checksum* for the selected **FTP PDU**

Field Name: TCP Checksum

Description: Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Data value (decimal): 4596

Data values in other bases:

Hexadecimal	1	1	F	4
Binary	0001	0001	1111	0100

Start Bit: 128

IP > TCP PDU > *Urgent Pointer* for the selected **FTP PDU**

Field Name: Urgent Pointer

Description: If the Urgent flag is set to on, this value indicates where the urgent data is located.

Data value (decimal): 0

Data values in other bases: Not applicable

Start Bit: 144

IP > TCP PDU > Options for the selected FTP PDU

Field Name: Options

Description: Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. Again, if an option does not fill up a 32-bit word, it will be filled in with padding bits. If present, may be used in negotiating a connection. The Options field must fit the 32-bit boundary and is padded with 0s if it does not

Some example options (Decimal):

0 End of Options list	3 Window scale
1 No operation (pad)	4 Selective ACK ok
2 Maximum segment size	8 Timestamp

Data value (hexadecimal): 01 01 08 0A 1B 25 F3 A1 0B DD 73 58

Data values in other bases: Not applicable

Start Bit: 160

Length: Variable

2.2.3 FTP PDU for the selected FTP PDU

IP >FTP > *Request/Response* for the selected FTP PDU

Description: Request: PASS (Password)

The argument field is a Telnet string specifying the user's password. This command must be immediately preceded by the user name command, and, for some sites, completes the user's identification for access control,

Data Values (hexadecimal): 50 41 53 53

Data Values in Other Bases:

ASCII P A S S Binary 0101 0000 0100 0001 0101 0011 0101 0011

Start Bit: 144

Length: 16

<u>RFC Link:</u> <u>http://www.ietf.org/rfc/rfc0959.txt?number=959</u>

IP >FTP > Data for the selected **FTP PDU**

Description: Payload for the FTP data gram Request Arg: f1a2k3user

Data Value (hexadecimal): 20 66 31 61 32 6B 33 75 73 65 72 0D 0A

Data Values in Other Bases:

ASCII	SPC	f	1	а	2	k	3
Binary	0010 0000	0110 0110	0011 0001	0110 0001	0011 0010	0110 1011	0011 0011

ASCII	u	S	e	r	\r	n
Binary	0111 0101	0111 0011	0110 0101	0111 0010	0000 1101	0000 1010

Start Bit: 144

2.2.4 IP PDU for the selected ICMP PDU

IP PDU > *IP Version* for the selected ICMP PDU

Field Name: IP Version

Description: Version is a 4-bit field that indicates the format of the Internet header.

Data value (decimal): 4

Data values in other bases:

Hexadecimal	4
Binary	0100

Start Bit: 0

IP PDU > *Header Length* for the selected ICMP PDU

Field Name: Header Length

Description: The IHL field is a 4 bit field indicating the length of the Internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5 (20 bytes) and the maximum value is 15 (60 bytes).

Data value (decimal): 5

Data values in other bases:

Hexadecimal	0	5
Binary	0000	0101

Start Bit: 4

IP PDU > *Type of Service* for the selected ICMP PDU

Field Name: *Type of Service*

Description: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a data gram through a particular network.

The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

Bits 0-2: Precedence Bit 3: (D) 0 = Normal Delay	1 = Low Delay
Bit 4: (T) 0 = Normal Throughput Bit 5: (R) 0 = Normal Reliability	1 = High Throughput 1 = High Reliability
Precedence:	

111 = Network Control	011 = Flash
110 = Internetwork Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Overridden	000 = Routine

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0
Binary	0000	0000

Start Bit: 8

IP PDU > *Total Length* for the selected ICMP PDU

Field Name: Total Length

Description: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including Internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Data values (decimal): 84

Data values in other bases:

Hexadecimal	0	0	5	4	
Binary	0000	0000	0101	0100	

Start Bit: 16

IP PDU > *Identification* for the selected ICMP PDU

Field Name: Identification

Description: Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a data gram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the data gram or any fragment could be alive in the Internet

Data value (decimal): 21929

Data values in other bases:

Hexadecimal	5	5	А	9
Binary	0101	0101	1010	1001

• The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.

• Mirage's binary data value was 0000 0000 0000 0000

Start Bit: 32

IP PDU > *Flags* for the selected ICMP PDU

Field Name: Flags

Description: Flags is a 3-bit field that indicates directions for fragmentation.

Bit 0: reserved, must be 0	
Bit 1: (DF) 0 = May Fragment	1 = Don't Fragment
Bit 2: (MF) $0 = \text{Last Fragment}$	1 = More Fragment

Data value (binary): 000

Data values in other bases: Not applicable

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary data value was 010

Start Bit: 48

IP PDU > *Fragment Offset* for the selected ICMP PDU

Field Name: Fragment Offset

Description: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0	0	0	
Binary	0000	0000	0000	0000	

Start Bit: 51

IP PDU > *Time to Live* for the selected ICMP PDU

Field Name: Time to Live

Description: Time to Live is an 8-bit field that indicates the maximum time the data gram is allowed to remain in the Internet. If this field contains the value 0, then the data gram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the data gram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum data gram lifetime.

Data value (decimal): 255

Data values in other bases:

Hexadecimal	F	F
Binary	1111	1111

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 64 in decimal

Start Bit: 64

IP PDU > *Protocol* for the selected ICMP PDU

Field Name: Protocol

Description: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

Dec He	X	Protocol	Dec	Hex	Protocol
0	00	Reserved	22	16	Multiplexing
1	01	ICMP	23	17	DCN
2	02	Unassigned	24	18	TAC Monitoring
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network
5	05	ST	100	64	SATNET and
					Backroom EXPAK
6	06	ТСР	101	65	MIT Subnet
					Support
7	07	UCL	102-104	66-68	Unassigned
10	0A	Unassigned	105	69	SATNET
					Monitoring
11	0B	Secure	106	6A	Unassigned
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core
					Utility
13	0D	NVP	110-113	6E-71	Unassigned
14	0 E	PUP	114	72	Backroom SATNET
					Monitoring
15	0F	Pluribus	115	73	Unassigned
16	10	Telnet	116	74	WIDEBAND
					Monitoring
17	11	XNET	117	75	WIDEBAND
					EXPAK
20	14	Chaos	120-376	78-0178	Unassigned
21	15	User Data gram	377	0179	Reserved

Data value (decimal): 1

Data values in other bases:

Hexadecimal	0	1
Binary	0000	0001

Start Bit: 72

Length: 8

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the Selected ICMP PDU

Field Name: Header Checksum

Description: The Header Checksum is a 16-bit field. This CRC algorithm is the 16-bit one's complement sum of all the 16-bit words in the header. For purposes of computing the checksum, the value of the checksum field is initially zero. When both header checksums are the same, then the header bits are correct. If either checksums vary, then a packet will need to be resent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Data value (decimal): 58402

Data values in other bases:

Hexadecimal	Е	4	2	2
Binary	1110	0100	0010	0010

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was B8 CC in hexadecimal

Start Bit: 80

IP PDU > *Source IP Address* for the Selected ICMP PDU

Field Name: Source IP Address

Description: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Data value: 192.168.0.101

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 192.168.0.39

Start Bit: 96

IP PDU > Destination IP Address for the selected ICMP PDU

Field Name: Destination IP Address

Description: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Data value: 192.168.0.39

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	2	7
Binary	1100	0000	1010	1000	0000	0000	0010	0111

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 192.168.0.101

Start Bit: 128

IP PDU > *Options* for the selected ICMP PDU

Field Name: Options

Description: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type

Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Some example options are:

0 End of Options list 1 No operation (pad) 7 Record route

68 Timestamp 131 Loose source route 137 Strict source route

Data values: Not applicable

Data values in other bases: Not applicable

Start Bit: 160

Length: Variable (0-40 bytes)

2.2.5 ICMP PDU for the selected ICMP PDU

IP > ICMP Header > *Type* for the selected **ICMP PDU**

Field Name: Type

Description: The type is an 8-bit field that identifies what sort of message the ICMP protocol is sending.

ICMP message types are:

- 0 Echo Reply
- 3 Destination Unreachable
- 4 Source Quench
- 5 Redirect
- 8 Echo
- 11 Time Exceeded
- 12 Parameter Problem
- 13 Timestamp
- 14 Timestamp Reply
- 15 Information Request
- 16 Information Reply

Dec	Hex	Message Type	Dec	Hex	Message Type
0	00	Echo Reply	16	10	Information Reply
1	01	Unassigned	17	11	Address Mask Request
2	02	Unassigned	18	12	Address Mask Reply
3	03	Destination Unreachable	19	13	Reserved (for Security)
4	04	Source Quench	20-29	14-1D	Reserved (for Robustness
					Experiment)
5	05	Redirect	30	1E	Traceroute
6	06	Alternate Host Address	31	1F	Data gram Conversion Error
7	07	Unassigned	32	20	Mobile Host Redirect
8	08	Echo	33	21	IPv6 Where-Are-You
9	09	Router Advertisement	34	22	IPv6 I-Am-Here
10	0A	Router Solicitation	35	23	Mobile Registration Request
11	0B	Time Exceeded	36	24	Mobile Registration Reply
12	0C	Parameter Problem	37	25	Domain Name Request
13	0D	Timestamp	38	26	Domain Name Reply
14	0 E	Timestamp Reply	39	27	SKIP
15	0F	Information Request	40	28	Photuris
			41-255	29-FF	Reserved

Data value: 0

Data values in other bases:

Hexadecimal	0	0
Binary	0000	0000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 8 in decimal

Start Bit: 0

Length: 8

<u>RFC Link: http://www.iana.org/assignments/icmp-parameters</u></u>
IP > ICMP Header > *Code* for the selected ICMP PDU

Field Name: Code

Description: Code is an 8-bit field that provides further information about the associated type field. Based on what type the ICMP PDU is, the code can have a number of meanings.

For example, with ICMP type 3 (Destination Unreachable) is as follows:

- 0 = net unreachable;
- 1 = host unreachable;
- 2 = protocol unreachable;
- 3 = port unreachable;
- 4 = fragmentation needed and DF set;
- 5 = source route failed.

Ty	pe	Name
0	0	Echo Reply (used by "PING")
	0	No Code
1		Unassigned
2		Unassigned
3		Destination Unreachable
	0	Net Unreachable
	1	Host Unreachable
	2	Protocol Unreachable
	3	Port Unreachable
	4	Fragmentation needed and
		Don't Fragment was Set
	5	Source Route Failed
	6	Destination Network Unknown
	7	Destination Host Unknown
	8	Source Host Isolated
	9	Communication with Destination
		Network is Administratively Prohibited
	10	Communication with Destination
		Host is Administratively Prohibited
	11	Destination Network Unreachable
		for Type of Service
	12	Destination Host Unreachable for
		Type of Service
4		Source Quench
	0	No Code
5		Redirect
	0	Redirect Data gram for the Network
	1	Redirect Data gram for the Host
		e
	2	Redirect Data gram for the Type of
		Service and Network
	3	Redirect Data gram for the Type of
	-	Service and Host
6		Alternate Host Address
-	0	Alternate Address for Host

Туре	Name
7	Unassigned
8	Echo (used by "PING")
	0 No Code
9	Router Advertisement
	0 No Code
10	Router Selection
0	No Code
11	Time Exceeded
0	Time to Live exceeded in Transit
1	Fragment Reassembly Time Exceeded
12	Parameter Problem
0	Pointer indicates the error
1	Missing a Required Option
2	Bad Length
13	Timestamp
0	No Code
14	Timestamp Reply
0	No Code
15	Information Request
0	No Code
16	Information Reply
0	No Code
17	Address Mask Request
	0 No Code
18	Address Mask Reply
	0 No Code
19	Reserved (for Security)
20-29	Reserved (for Robustness
	Experiment)
30	Trace route
31	Data gram Conversion Error
32	Mobile Host Redirect
33	IPv6 Where-Are-You
34	IPv6 I-Am-Here
35	Mobile Registration Request

36 Mobile Registration Reply

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0
Binary	0000	0000

Start Bit: 8

IP > ICMP Header > *ICMP Checksum* **for the selected ICMP PDU**

Field Name: ICMP Checksum

Description: The checksum is the 16-bit one's complement of the one's complement sum of the ICMP message, starting with the ICMP type. For computing the checksum, the checksum field should initially be zero.

Data value (decimal): 17173

Data values in other bases:

Hexadecimal	4	3	1	5
Binary	0100	0011	0001	0101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was C9 15 in hexadecimal

Start Bit: 16

IP > ICMP Header > *Identifier* for the selected **ICMP PDU**

Field Name: Identifier

Description: The identifier is a 16-bit field that is used in matching echoes and replies for when the code field is zero.

Data value (decimal): 28768

Data values in other bases:

Hexadecimal	7	0	6	0
Binary	0111	0000	0110	0000

<u>Start Bit</u>: 32

IP > ICMP Header > *Sequence Number* for the selected **ICMP PDU**

Field Name: Sequence Number

Description: The sequence is a 16-bit field that is used in matching echoes and replies for when the code field is zero.

Data value (decimal): 256

Data values in other bases:

Hexadecimal	0	1	0	0
Binary	000	0001	0000	0000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 70 60 in hexadecimal

Start Bit: 48

IP > ICMP Header > *Data* for the selected **ICMP PDU**

Field Name: Data

Description: The data is a variable-length field that contains the actual information that is sent in the ping packet.

Data value (hexadecimal): 43 B1 89 3F 00 00 00 00 B8 C6 07 00 00 00 00 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

Data values in other bases: Not applicable

Start Bit: 64

Length: Variable

2.2.6 IP PDU for the selected SMTP PDU

IP PDU > *IP Version* for the selected SMTP PDU

Field Name: IP Version

Description: Version is a 4-bit field that indicates the format of the Internet header

Data value (decimal): 4

Data values in other bases:

Hexadecimal	4
Binary	0100

Start Bit: 0

IP PDU > *Header Length* for the selected **SMTP PDU**

Field Name: Header Length

Description: The IHL field is a 4-bit field indicating the length of the Internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5 (20 bytes) and the maximum value is 15 (60 bytes).

Data value: 5

Data values in other bases:

Hexadecimal	0	5
Binary	0000	0101

Start Bit: 4

IP PDU > *Type of Service* for the selected SMTP PDU

Field Name: Type of Service

Description: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a data gram through a particular network.

The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

Bits 0-2: Precedence	
Bit 3: (D) $0 =$ Normal Delay	1 = Low Delay
Bit 4: (T) $0 =$ Normal Throughput	1 = High Throughput
Bit 5: (R) $0 =$ Normal Reliability	1 = High Reliability
Precedence:	
111 – Network Control	011 - Flash

111 = Network Control 110 = Internetwork Control 101 = CRITIC/ECP 100 = Flash Overridden 011 = Flash 010 = Immediate 001 = Priority 000 = Routine

Data value (decimal): 16

Data values in other bases:

Hexadecimal	1	0
Binary	0001	0000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 0 in decimal

Start Bit: 8

IP PDU > *Total Length* for the selected **SMTP PDU**

Field Name: Total Length

Description: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including Internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets

Data values (decimal): 70

Data values in other bases:

Hexadecimal	0	0	4	6
Binary	0000	0010	0100	0110

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 02 12 in hexadecimal

Start Bit: 16

IP PDU > *Identification* for the selected **SMTP PDU**

Field Name: Identification

Description: Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a data gram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the data gram or any fragment could be alive in the Internet.

Data value (decimal): 46047

Data values in other bases:

Hexadecimal	В	3	D	F
Binary	1011	0011	1101	1111

• The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.

• Mirage's data value was 61 28 in hexadecimal

Start Bit: 32

IP PDU > *Flags* for the selected SMTP PDU

Field Name: Flags

Description: Flags is a 3-bit field that indicates directions for fragmentation.

Bit 0: reserved, must be 0	
Bit 1: (DF) 0 = May Fragment	1 = Don't Fragment
Bit 2: (MF) $0 = \text{Last Fragment}$	1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

<u>Start Bit</u>: 48

IP PDU > *Fragment Offset* for the selected SMTP PDU

Field Name: Fragment Offset

Description: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0	0	0
Binary	0000	0000	0000	0000

Start Bit: 51

IP PDU > *Time to Live* for the selected SMTP PDU

Field Name: Time to Live

Description: Time to Live is an 8-bit field that indicates the maximum time the data gram is allowed to remain in the Internet. If this field contains the value 0, then the data gram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the data gram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum data gram lifetime.

Data value (decimal): 128

Data values in other bases:

Hexadecimal	8	0
Binary	1000	0000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 64 in decimal

Start Bit: 64

IP PDU > *Protocol* for the selected SMTP PDU

Field Name: Protocol

Description: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

Dec	Hex	Protocol	Dec	Hex	Protocol
0	00	Reserved	22	16	Multiplexing
1	01	ICMP	23	17	DCN
2	02	Unassigned	24	18	TAC Monitoring
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network
5	05	ST	100	64	SATNET and
					Backroom EXPAK
6	06	ТСР	101	65	MIT Subnet
					Support
7	07	UCL	102-104	66-68	Unassigned
10	0A	Unassigned	105	69	SATNET
					Monitoring
11	0B	Secure	106	6A	Unassigned
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core
					Utility
13	0D	NVP	110-113	6E-71	Unassigned
14	0E	PUP	114	72	Backroom SATNET
					Monitoring
15	0F	Pluribus	115	73	Unassigned
16	10	Telnet	116	74	WIDEBAND
					Monitoring
17	11	XNET	117	75	WIDEBAND
					EXPAK
20	14	Chaos	120-376	78-0178	Unassigned
21	15	User Data gram	377	0179	Reserved

Data value (decimal): 6

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110

Start Bit: 72

Length: 8

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected **SMTP PDU**

Field Name: Header Checksum

Description: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Data value (decimal): 24840

Data values in other bases:

Hexadecimal	6	1	0	8
Binary	0110	0001	0000	1000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was F1 F3 in hexadecimal

Start Bit: 80

IP PDU > *Source IP Address* for the selected SMTP PDU

Field Name: Source IP Address

Description: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Data value (decimal): 192.168.100.20

Data values in other bases:

Hexadecimal	С	0	А	8	6	4	1	4
Binary	1100	0000	1010	1000	0110	0100	0001	0100

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 192.168.0.101 in decimal

<u>Start Bit</u>: 96

IP PDU > Destination IP Address for the selected SMTP PDU

Field Name: Destination IP Address

Description: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Data value (decimal): 192.168.0.101

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 192.168.100.20 in decimal

Start Bit: 128

IP PDU > *Options* for the selected SMTP PDU

Field Name: Options

Description: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type

Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Some example options are:

0 End of Options list 1 No operation (pad) 7 Record route 68 Timestamp 131 Loose source route 137 Strict source route

Data values: Not applicable

Data values in other bases: Not applicable

Start Bit: 160

Length: Variable (0-40 bytes)

2.2.7 TCP PDU for the selected SMTP PDU

IP > TCP PDU > *Source Port Number* for the selected **SMTP PDU**

Field Name: Source Port Number

Description: A 16-bit address assigned by the sending computer, to the application program sending data as TCP data grams.

Common TCP Well-Known Server Ports (Decimal): 110 pop3 07 echo 19 chargen 111 sunrpc 20 ftp-data 119 nntp 21 ftp-control 139 netbios-ssn 22 ssh 143 imap 23 telnet 179 bgp 25 smtp 389 idap 53 domain 443 https(ssl) 79 finger 445 microsoft-ds 1080 socks 80 http

Data value (decimal): 32816

Data values in other bases:

Hexadecimal	8	0	3	0
Binary	1000	0000	0011	0000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 3651 in decimal

Start Bit: 0

IP > TCP PDU > Destination Port Number for the selected SMTP PDU

Field Name: Destination Port Number

Description: A 16-bit address assigned by the receiving computer, to the destination application program for this message.

Common TCP Well-Known Server Ports (Decimal):

110 pop3
111 sunrpc
119 nntp
139 netbios-ssn
143 imap
179 bgp
389 idap
443 https (ssl)
445 microsoft-ds
1080 socks

Data value (decimal): 21 (indicates SMTP)

Data values in other bases:

Hexadecimal	0	0	1	5
Binary	0000	0000	0001	0101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 25 in decimal

Start Bit: 16

IP > TCP PDU > *Sequence Number* for the selected **SMTP PDU**

Field Name: Sequence Number

Description: TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Data value (decimal): 2175080044

Data values in other bases:

Hexadecimal	8	1	Α	5	1	6	6	С
Binary	1000	0001	1010	0101	0001	0110	0110	1100

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 2069207327 in decimal

<u>Start Bit</u>: 32

IP > TCP PDU > *Acknowledgement Number* for the selected **SMTP PDU**

Field Name: Acknowledgement Number

Description: This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Data value (decimal): 2275627869

Data values in other bases:

Hexadecimal	8	7	А	3	5	3	5	D
Binary	1000	0111	1010	0011	0101	0011	0101	1101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 3827794966 in decimal

Start Bit: 64

IP > TCP PDU > *Length* for the selected **SMTP PDU**

Field Name: Length

Description: The Header Length field is a 4-bit field indicating the length of the TCP header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5 (20 bytes) and the maximum value is 15 (60 bytes).

Data value (decimal): 8

Data values in other bases:

Hexadecimal	0	8
Binary	0000	1000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 128 in decimal

<u>Start Bit</u>: 96

IP > TCP PDU > *Reserved* for the selected SMTP PDU

Field Name: Reserved

Description: These 6 bits are unused and are always set to 0.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0	0	0	0	0
Binary	0000	0000	0000	0000	0000	0000

Start Bit: 100

IP > TCP PDU > *Control Flags* for the selected SMTP PDU

Field Name: Control Flags

Description: Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Flags: U A P R S F U (1 = Urgent pointer valid) A (1 = Acknowledgement field value valid) P (1 = Push data) R (1 = Reset connection) S (1 = Synchronize sequence numbers) F (1 = no more data; Finish connection)

Data value (binary): 01 1000

Data values in other bases: Not applicable

Start Bit: 106

IP > TCP PDU > Window Size for the selected SMTP PDU

Field Name: Window Size

Description: Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Data value (decimal): 5840

Data values in other bases:

Hexadecimal	1	6	D	0
Binary	0001	0110	1101	0000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 32120 in decimal

Start Bit: 112

IP > TCP PDU > *TCP Checksum* for the selected **SMTP PDU**

Field Name: TCP Checksum

Description: Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Data value (decimal): 4596

Data values in other bases:

Hexadecimal	1	1	F	4
Binary	0001	0001	1111	0100

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 72 B5 in hexadecimal

Start Bit: 128

IP > TCP PDU > *Urgent Pointer* for the selected **SMTP PDU**

Field Name: Urgent Pointer

Description: If the Urgent flag is set to on, this value indicates where the urgent data is located.

<u>Data value</u>: Not applicable

Data values in other bases: Not applicable

Start Bit: 144

IP > TCP PDU > *Options* for the selected **SMTP PDU**

Field Name: Options

Description: Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. If present may be used in negotiating a connection. The options field must fit the 32 bit boundary and is padded with 0's if it does not.

Some example options (In decimal):

- 0 End of options list
- 1 No operation (pad)
- 2 Maximum segment size
- 3 Window scale
- 4 Selective Acknowledgement OK
- 8 Timestamp

Data value (hexadecimal): 01 01 08 0A 1B 25 F3 A1 0B DD 73 58

Data values in other bases: Not applicable

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 01 01 08 0A 07 AE F6 75 00 21 66 A4 in hexadecimal

Start Bit: 160

Length: Variable

2.2.8 SMTP PDU for the selected SMTP PDU

IP > SMTP Header > *Data* for the selected **SMTP PDU**

Field Name: Data

Description: ASCII messages sent between SMTP hosts.

Command	Description
DATA	Begins message composition.
EXPN <string></string>	Returns names on the specified mail list.
HELO <domain></domain>	Returns identity of mail server.
HELP <command/>	Returns information on the specified command.
MAIL FROM <host></host>	Initiates a mail session from host.
NOOP	Causes no action, except acknowledgement from
	server.
QUIT	Terminates the mail session.
RCPT TO <user></user>	Designates who receives mail.
RSET	Resets mail connection.
SAML FROM <host></host>	Sends mail to user terminal and mailbox.
SEND FROM <host></host>	Sends mail to user terminal.
SOML FROM <host></host>	Sends mail to user terminal or mailbox.
TURN	Switches role of receiver and sender.
VRFY <user></user>	Verifies the identity of a user.

Data value: Content_TEXT\Plain;name="mimetest.txt"

Data values in other bases:

Hexadecimal	4	3	6	F	6	Е	7	4
Binary	0100	0011	0110	1111	0110	1110	0111	0100
Hexadecimal	6	5	6	Е	7	4	2	D
Binary	0110	0101	0110	1110	0111	0100	0010	1101
Hexadecimal	5	4	4	5	5	8	5	4
Binary	0101	0100	0100	0101	0101	1000	0101	0100
Hexadecimal	2	F	5	0	6	С	6	1
Binary	0010	1111	0101	0000	0110	1100	0110	0001
Hexadecimal	6	9	6	Е	3	В	6	9
Binary	0110	1001	0110	1110	0011	1011	0110	1001

Hexadecimal	6	1	6	D	6	5	3	D
Binary	0110	0001	0110	1101	0110	0101	0011	1101
Hexadecimal	2	0	6	3	6	8	6	1
Binary	0010	0000	0110	0011	0110	1000	0110	0001
Hexadecimal	2	2	7	4	6	5	7	3
Binary	0010	0010	0111	0100	0110	0101	0111	0011
Hexadecimal	7	4	2	Е	7	4	7	8
Binary	0111	0100	0010	1110	0111	0100	0111	1000
Hexadecimal	7	4	2	0				
Binary	0111	0100	0010	0000				

Start Bit: 0

Length: 152

<u>RFC Link:</u> <u>http://www.ietf.org/rfc/rfc0821.txt?number=821</u>

IP > SMTP Header > *Message* for the selected **SMTP PDU**

Field Name: Message

Description: Response messages consist of a response code followed by explanatory text

Response Code Explanatory Text

211	(Response to system status or help request).
214	(Response to help request).
220	Mail service ready.
221	Mail service closing connection.
250	Mail transfer completed.
251	User not local, forward to <path>.</path>
354	Start mail message, end with <crlf><crlf>.</crlf></crlf>
421	Mail service unavailable.
450	Mailbox unavailable.
451	Local error in processing command.
452	Insufficient system storage.
500	Unknown command.
501	Bad parameter.
502	Command not implemented.
503	Bad command sequence.
504	Parameter not implemented.
550	Mailbox not found.
551	User not local, try <path>.</path>
552	Storage allocation exceeded.
553	Mailbox name not allowed.
554	Mail transaction failed.

<u>Data value</u>: *Not applicable*.

Start Bit: 152

Length: Variable

2.2.9 IP PDU for the selected HTTP PDU

IP PDU > *IP Version* for the selected HTTP PDU

Field Name: IP Version

Description: Version is a 4-bit field that indicates the format of the Internet header.

Data value (decimal): 4

Data values in other bases:

Hexadecimal	4
Binary	0100

Start Bit: 0

IP PDU> *Header Length* for the selected HTTP PDU

Field Name: Header Length

Description: The IHL field is a 4-bit field indicating the length of the Internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Data values in other bases:

Hexadecimal	0	5
Binary	0000	0101

Start Bit: 4

IP PDU > *Type of Service* for the selected HTTP PDU

Field Name: Type of Service

Description: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a data gram through a particular network.

The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

Bits 0-2: Precedence	
Bit 3: (D) $0 =$ Normal Delay	1 = Low Delay
Bit 4: (T) 0 = Normal Throughput	1 = High Throughput
Bit 5: (R) $0 =$ Normal Reliability	1 = High Reliability

Precedence:

111 = Network Control	
110 = Internetwork Control	
101 = CRITIC/ECP	
100 = Flash Overrided	

Data value (decimal): 16

Data values in other bases:

Hexadecimal	1	0
Binary	0001	0000

011 = Flash 010 = Immediate 001 = Priority 000 = Routine

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 0 in decimal.

Start Bit: 8
IP PDU > *Total Length* for the selected HTTP PDU

Field Name: Total Length

Description: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including Internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Data values (decimal): 69

Data values in other bases:

Hexadecimal	0	0	4	5
Binary	0000	0000	0100	0101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 570 in decimal.

Start Bit: 16

IP PDU > *Identification* for the selected HTTP PDU

Field Name: Identification

Description: Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a data gram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the data gram or any fragment could be alive in the Internet.

Data value (decimal): 43585

Data values in other bases:

Hexadecimal	А	А	4	1
Binary	1010	1010	0100	0001

• The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.

• Mirage's data value was 15365 in decimal.

Start Bit: 32

IP PDU > *Flags* for the selected HTTP PDU

Field Name: Flags

Description: Flags is a 3-bit field that indicates directions for fragmentation.

Bit 0: reserved, must be 0	
Bit 1: (DF) 0 = May Fragment	1 = Don't Fragment
Bit 2: (MF) $0 = \text{Last Fragment}$	1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

<u>Start Bit</u>: 48

IP PDU > *Fragment Offset* for the selected HTTP PDU

Field Name: Fragment Offset

Description: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0	0	0
Binary	0000	0000	0000	0000

Start Bit: 51

IP PDU > *Time to Live* for the selected HTTP PDU

Field Name: Time to Live

Description: Time to Live is an 8-bit field that indicates the maximum time the data gram is allowed to remain in the Internet. If this field contains the value 0, then the data gram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the data gram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum data gram lifetime.

Data value (decimal): 64

Data values in other bases:

Hexadecimal	4	0
Binary	0100	0000

Start Bit: 64

IP PDU > *Protocol* for the selected HTTP PDU

Field Name: Protocol

Description: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

Dec	Hex	Protocol	Dec	Hex	Protocol
0	0	Reserved	22	16	Multiplexing
1	1	ICMP	23	17	DCN
2	2	Unassigned	24	18	TAC Monitoring
3	3	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	4	CMCC Gateway Monitoring Message	77	4D	Any local network
5	5	ST	100	64	SATNET and
					Backroom EXPAK
6	6	TCP	101	65	MIT Subnet Support
7	7	UCL	102-104	66-68	Unassigned
10	А	Unassigned	105	69	SATNET Monitoring
11	В	Secure	106	6A	Unassigned
12	С	BBN RCC Monitoring	107	6B	Internet Packet Core
					Utility
13	D	NVP	110-113	6E-71	Unassigned
14	E	PUP	114	72	Backroom SATNET
					Monitoring
15	F	Pluribus	115	73	Unassigned
16	10	Telnet	116	74	WIDEBAND
					Monitoring
17	11	XNET	117	75	WIDEBAND
					EXPAK
20	14	Chaos	120-376	78-178	Unassigned
21	15	User Datagram	377	179	Reserved

Data value (decimal): 6

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110

Start Bit: 72

Length: 8

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected HTTP PDU

Field Name: Header Checksum

Description: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Data value (decimal): 3717

Data values in other bases:

Hexadecimal	0	Е	8	5
Binary	0000	1110	1000	0101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 31319 in decimal.

Start Bit: 80

IP PDU > *Source IP Address* for the selected HTTP PDU

Field Name: Source IP Address

Description: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Data value (decimal): 192.168.0.39

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	2	7
Binary	1100	0000	1010	1000	0000	0000	0010	0111

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 192.168.0.012 in decimal.

<u>Start Bit</u>: 96

IP PDU > Destination IP Address for the selected HTTP PDU

Field Name: Destination IP Address

Description: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Data value (decimal): 192.168.0.101

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101

Start Bit: 128

IP PDU > *Options* for the selected HTTP PDU

Field Name: Options

Description: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Data values: Not applicable

Data values in other bases: Not applicable

Start Bit: 160

Length: 0-40

IP PDU > *Data* for the selected HTTP PDU

Field Name: Data

Description: The Data is a variable length field, which contains the actual data that is being sent from one host to another. The data field may start with a Layer 4 header, which will give additional instructions to the application that will be receiving the data; alternately, it may be an ICMP header and not contain any user data at all.

Data values (hexadecimal): (TCP) 80 30 00 15 81 A5 16 6C 87 A3 53 5D 80 18 16 D0 11 F4 00 00 01 01 08 0A 1B 25 F3 A1 0b DD 73 58 (FTP) 50 41 53 53 20 66 31 61 32 6B 33 75 73 65 72 0D 0A

Data values in other bases: Not applicable

2.2.10 TCP PDU for the selected HTTP PDU

IP > TCP PDU > *Source Port Number* for the selected HTTP PDU

Field Name: Source Port Number

Description: This 16-bit number represents the name of the application that sent the data in the IP packet.

Data value (decimal): 32816

Data values in other bases:

Hexadecimal	8	0	3	0
Binary	1000	0000	0011	0000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 50 in decimal.

Start Bit: 0

IP > TCP PDU > *Destination Port Number* for the selected HTTP PDU

Field Name: Destination Port Number

Description: This 16-bit number represents the name of the application that is to receive the data contained within the IP packet. This is one of the major differences between a Layer 3 and a Layer 4 header: the Layer 3 header contains the IP address of the computer that is to receive the IP packet; once that packet has been received, the port address in the Layer 4 header ensures that the data contained within that IP packet is passed to the correct application on that computer.

This key indicates assigned port number values:

Dec	Port Numbers
0	Reserved
1-32767	Internet registered ("well-known") protocols
32768-98303	Reserved, to allow TCPv7-TCPv4 conversion
98304 & up	Dynamic assignment

Data value (decimal): 21

Data values in other bases:

Hexadecimal	0	0	1	5
Binary	0000	0000	0001	0101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 4255 in decimal.

Start Bit: 16

Length: 16

Source: http://www.zvon.org/tmRFC/RFC1475/Output/chapter4.html

IP > TCP PDU > *Sequence Number* for the selected HTTP PDU

Field Name: Sequence Number

Description: TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Data value (decimal): 2175080044

Data values in other bases:

Hexadecimal	8	1	Α	5	1	6	6	С
Binary	1000	0001	1010	0101	0001	0110	0110	1100

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 988014608 in decimal.

Start Bit: 32

IP > TCP PDU > *Acknowledgement Number* for the selected HTTP PDU

Field Name: Acknowledgement Number

Description: This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Data value (decimal): 2275627869

Data values in other bases:

Hexadecimal	8	7	А	3	5	3	5	D
Binary	1000	0111	1010	0011	0101	0011	0101	1101

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 1398299764 in decimal.

Start Bit: 64

IP > **TCP PDU** > *Length* for the selected **HTTP PDU**

Field Name: Length

Description: This is identical in concept to the header length in an IP packet, except this time it indicates the length of the TCP header.

Data value (decimal): 8

Data values in other bases:

Hexadecimal	0	8
Binary	0000	1000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 128 in decimal.

<u>Start Bit</u>: 96

IP > TCP PDU > *Reserved* for the selected HTTP PDU

Field Name: Reserved

Description: 4 bits; set to 0 ECN bits (used when ECN employed; else 00) CWR (1=sender has cut congestion window in half ECN-Echo (1=receiver has cut congestion window in half

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0
Binary	0000	0000

Start Bit: 100

Length: 6 Bits

IP > TCP PDU > *Control Flags* for the selected HTTP **PDU**

Field Name: Control Flags

Description: Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

- Urgent (URG)
- Acknowledgement (ACK)
- Push (PSH)
- Reset (RST)
- Synchronize (SYN)
- Finish (FIN)

Data value (binary): 01 1000

Data values in other bases: Not applicable

Start Bit: 106

IP > **TCP PDU** > *Window Size* for the selected HTTP **PDU**

Field Name: Window Size

Description: Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Data value (decimal): 5840

Data values in other bases:

Hexadecimal	1	6	D	0
Binary	0001	0110	1101	0000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 7504 in decimal.

Start Bit: 112

IP > TCP PDU > *Urgent Pointer* for the selected HTTP PDU

Field Name: Urgent Pointer

Description: If the Urgent flag is set to on, this value indicates where the urgent data is located.

Information Key: Not applicable

Data value: *Not applicable*

Data values in other bases: Not applicable

IP > TCP PDU > *TCP Checksum* for the selected **HTTP PDU**

Field Name: TCP Checksum

Description: Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Data value (decimal): 4596

Data values in other bases:

Hexadecimal	1	1	F	4
Binary	0001	0001	1111	0100

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 61686 in decimal.

Start Bit: 128

IP > TCP PDU > *Options* for the selected HTTP PDU

Field Name: Options

Description: Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. Again, if an option does not fill up a 32-bit word, it will be filled in with padding bits.

Data value (hexadecimal): 01 01 0A 1B 25 F3 A1 0B DD 73 58

Data values in other bases: Not applicable

Start Bit: 160

Length: Variable

2.2.11 HTTP PDU for the selected HTTP PDU

IP > **TCP** > **HTTP PDU** > *Content Type* for the selected **HTTP PDU**

Field Name: Content Type

Description: The Content-Type entity-header field indicates the media type of the Entity-Body sent to the recipient.

Data value (ASCII): text/html; charset=iso - 8859-1\r\n

Data values in other bases:

Hexadecimal	4	3	6	F	6	Е	7	4	
Binary	0100	0011	0110	1111	0110	1110	0111	0100	
ASCII	(2	()	1	1	1	t	
							L		
Hexadecimal	6	5	6	Е	7	4	2	D	
Binary	0110	0101	0110	1110	0111	0100	0010	1101	
ASCII	(e	ľ	1	1	t	-	-	
Hexadecimal	5	4	7	9	7	0	6	5	
Binary	0101	0100	0111	1001	0111	0000	0110	0101	
ASCII]	Г	y	/	1)	6	9	
Hexadecimal	3	Α	2	0	7	4	6	5	
Binary	0110	1010	0010	0000	0111	0100	0110	0101	
ASCII					t			9	
Hexadecimal	7	8	7	4	2	F	6	8	
Binary	0111	1000	0111	0100	0010	1111	0110	1000	
ASCII	2	K	1	t	,	/	ł	1	
·									
Hexadecimal	7	4	6	D	6	С	3	В	
Binary	0111	0100	0110	1101	0110	1100	0011	1011	
ASCII	1	t	n	n		1		,	
		_		•	-	1			
Hexadecimal	2	0	6	3	6	8	6	1	
Binary	0010	0000	0110	0011	0110	1000	0110	0001	
ASCII				c		h	6	a	
·		r				r	r		
Hexadecimal	7	2	7	3	6	5	7	4	
Binary	0111	0010	0111	0011	0110	0101	0111	0100	
ASCII	1	r	5	5	(e	1	t	

Hexadecimal	3	D	6	9	7	3	6	F
Binary	0011	1101	0110	1001	0111	0011	0110	1111
ASCII	=	=		İ		5	()
Hexadecimal	2	D	3	8	3	8	3	5
Binary	0010	1101	0011	1000	0011	1000	0011	0101
ASCII		-	5	8	5	8	4	5
Hexadecimal	3	9	2	D	3	1	0	D
Binary	0011	1001	0010	1101	0011	0001	0000	1101
ASCII	()		-		1	\	r

Hexadecimal	0	А
Binary	0000	1010
ASCII	/1	n

Start Bit: 0

IP > TCP > HTTP PDU > *Date* for the selected HTTP PDU

Field Name: Date

Description: This field contains the date and time on which the web page was accessed.

Data value (ASCII): Date: Tue, 03 Feb 2004 23:08:10 GMT\r\n

Data values in other bases:

Hexadecimal	4	6	6	1	7	4	6	5
Binary	0110	0110	0110	0001	0111	0100	0110	0101
ASCII	Ι)	:	a		t	(e
Hexadecimal	3	Α	2	0	5	4	7	5
Binary	0010	1010	0010	0000	0101	0100	0111	0101
ASCII		:				Γ	ι	1
Hexadecimal	6	5	2	С	2	0	3	0
Binary	0110	0101	0010	1100	0010	0000	0011	0000
ASCII	(e		,			()
Hexadecimal	3	3	2	0	4	6	6	5
Binary	0011	0011	0010	0000	0100	0110	0110	0101
ASCII		3]	- -	(2
Hexadecimal	6	2	2	0	3	2	3	0
Binary	0110	0010	0010	0000	0011	0010	0011	0000
ASCII	1	0				2	()
Hexadecimal	3	0	3	4	3	2	3	3
Binary	0011	0000	0011	0100	0011	0010	0011	0011
ASCII	()	4	4		2		3
Hexadecimal	3	Α	3	0	3	8	3	А
Binary	0011	1010	0011	0000	0011	1000	0011	1010
ASCII			()		3		
Hexadecimal	3	1	3	0	2	0	4	7
Binary	0011	0001	0011	0000	0010	0000	0100	0111
ASCII		1	()			(Ĵ
Hexadecimal	4	D	5	4	0	D	0	Α
Binary	0100	1101	0101	0100	0000	1101	0000	1010
ASCII	Ν	A		Γ	\	r	/:	n

Start Bit: 0

IP > **TCP** > **HTTP PDU** > *HTTP* for the selected HTTP **PDU**

Field Name: HTTP

Description: This field displays the category of the page that is being displayed.

Data value (ASCII): HTTP/1.1 404 Not Found\r\n

Data values in other bases:

Hexadecimal	4	8	5	4	5	4	5	0	
Binary	0100	1000	0101	0100	0101	0100	0101	0000	
ASCII	H	ł	[Γ	r	Γ	Р		
Hexadecimal	2	F	3	1	2	Е	3	1	
Binary	0010	1111	0011	0001	0010	1110	0011	0001	
ASCII	/	/	-	1		•	1		
Hexadecimal	2	0	3	4	3	0	3	4	
Binary	0010	0000	0011	0100	0011	0000	0011	0100	
ASCII			2	1	0		4		
Hexadecimal	2	0	4	Е	6	F	7	4	
Binary	0010	0000	0100	1110	0110	1111	0111	0100	
ASCII			1	V	()	1	t	
Hexadecimal	2	0	4	6	6	F	7	5	
Binary	0010	0000	0100	0110	0110	1111	0111	0101	
ASCII			I	[T	()	ι	1	
Hexadecimal	6	E	6	4	0	D	0	A	
Binary	0110	1110	0110	0100	0000	1101	0000	1010	
ASCII	1	1	(1	\	r	/1	n	

Start Bit: 0

Length: 40 octets

IP > **TCP** > **HTTP PDU** > *Server* for the selected **HTTP PDU**

Field Name: Server

Description: The Server response-header field contains information about the software used by the origin server to handle the request.

<u>Field Key</u>: Not applicable

Data value (ASCII): Server: Apache/1.3.24 (Unix) PHP/4.2.1\r\n

Data values in other bases:

Havadaaimal	5	2	6	5	7	2	7	6
Hexadecimal	3	3	0	3	/	2	/	0
Binary	0101	0011	0110	0101	0111	0010	0111	0110
ASCII		5	6	5	1	r	V	/
Hexadecimal	6	5	7	2	3	Α	2	0
Binary	0110	0101	0111	0010	0011	1010	0010	0000
ASCII	(e	1	r		•		
Hexadecimal	4	1	7	0	6	1	6	3
Binary	0110	0001	0111	0000	0110	0001	0110	0011
ASCII	A	1	1)	6	a	(;
Hexadecimal	6	8	6	5	2	F	3	1
Binary	0110	1000	0110	0101	0010	1111	0011	0001
ASCII	1	1		e	/]	
Hexadecimal	2	Е	3	3	2	Е	3	2
Binary	0010	1110	0011	0011	0010	1110	0011	0010
ASCII				3			2	
Hexadecimal	3	4	2	0	2	8	5	5
Binary	0011	0100	0010	0000	0010	1000	0101	0101
ASCII	2	1				(J	J
Hexadecimal	6	Е	6	9	7	8	2	9
Binary	0110	1110	0110	1001	0111	1000	0010	1001
ASCII	1	1	1	i	2	x)
Hexadecimal	2	0	5	0	4	8	5	0
Binary	0010	0000	0101	0000	0100	1000	0101	0000
ASCII		-	l	P		H	P	

Hexadecimal	2	5	3	4	2	Е	3	2
Binary	0010	0101	0011	0100	0010	1110	0011	0010
ASCII	,	4		1			2	

Hexadecimal	2	Е	3	1	0	D	0	А
Binary	0010	1110	0011	0001	0000	1101	0000	1010
ASCII		•			/	r	\n	

Start Bit: 0

IP > TCP > HTTP PDU > *Data* for the selected HTTP PDU

Field Name: Data

Description: This field stores the information that is actually contained in the HTTP Protocol.

Data value (ASCII): <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">\n

<HTML><HEAD>\n

<TITLE>404 Not Found</TITLE>\n

</HEAD><BODY>\n

<H1>Not Found</H1>\n

The requested URL /~csis410/2003/bluetech/Requirements Specification Document Final-files/image002.gif was not found on this server.\n

<HR>\n

<ADDRESS>Apache/1.3.24 Server at ares.cs.siena.edu Port 80</ADDRESS>\n </BODY></HTML>\n

Data values in other bases:

Hexadecimal	3	С	2	1	4	4	4	5	
Binary	0011	1100	0010	0001	0100	0100	0100	0101	
ASCII	~	<	!			D		0	
Hexadecimal	4	3	5	4	5	9	5	0	
Binary	0100	0011	0101	0100	0101	1001	0101	0000	
ASCII	(2	,	Г		Y		Р	
Hexadecimal	4	5	2	0	4	8	5	4	
Binary	0100	0101	0010	0000	0100	1000	0101	0100	
ASCII]	È				Н		Т	
Hexadecimal	4	D	4	С	2	0	5	0	
Binary	0100	1101	0110	1100	0010	0000	0101	0000	
ASCII	Ν	A]	L			Р		
Hexadecimal	5	5	4	2	4	С	4	9	
Binary	0101	0101	0100	0010	0100	1100	0100	1001	
ASCII		U	-	В		L		Ι	
Hexadecimal	4	3	2	0	2	2	2	D	
Binary	0100	0011	0010	0000	0010	0010	0010	1101	
ASCII		С				"		-	

Hexadecimal	2	F	2	F	4	9	4	5
Binary	0010	1111	0010	1111	0100	1001	0100	0101
ASCII		/	/	/		Ι	H	
Hexadecimal	5	4	4	6	2	F	2	F
Binary	0101	0100	0100	0110	0010	1111	0010	1111
ASCII		Γ	H	7		/	/	
Hexadecimal	4	4	5	4	4	4	2	0
Binary	0100	0100	0101	0100	0100	0100	0010	0000
ASCII	Ι)	T D)			
		I				I		
Hexadecimal	4	8	5	4	4	D	4	С
Binary	0100	1000	0101	0100	0100	1101	0100	1100
ASCII	I	H]	Γ	Ν	Ν	I	
Hexadecimal	2	0	3	2	2	E	3	0
Binary	0010	0000	0011	0010	0010	1110	0011	0000
ASCII			2				()
** 1 • 1						-		
Hexadecimal	2	F	2	F	4	5	4	E
Binary	0010	1111	0010	1111	0100	0101	0100	1110
ASCII		/	,	/	E		N	
II	2	2		Б	0	•	2	0
Hexadecimal	2	<u> </u>	3	E	0	A 1010	3	1100
Binary	0010		0011	1110	0000	1010	0011	1100
ASCII			-	>	1/	1		
Havadaaimal	4	0	5	4	1	р	1	C
Binory	4	0	0101	4	4	1101	4	1100
	0100 I	1000	0101		0100	1101	0100 I	1100
ASCII	1	1		L	1	VI		
Hexadecimal	2	F	3	С	Δ	8	4	5
Rinary	`		,	C		0	–	5
	<u> </u>	1110	0011	1100	0100	1000	0100	0101
ASCII	0011	1110	0011	1100	0100	1000	0100	0101
ASCII	<u> </u>	L 1110	0011	1100	0100	1000 H	0100 H	0101 E
ASCII	3 0011 2	L 1110 >	<u> </u>	1100 < 4	0100	1000 H E	0100 H	0101 E A
ASCII Hexadecimal Binary	0011 22 4 0100	L 1110 > 1 0001	0011 4 0100	1100 < 4 0100	0100 3 0011	1000 H E 1110	0100 H 0 0000	0101 E A 1010
ASCII Hexadecimal Binary ASCII	0011 22 4 0100	1110 > 1 0001	0011 4 0100	1100 < 4 0100	0100 3 0011	1000 H E 1110	0100 H 0 0000	0101 E A 1010
ASCII Hexadecimal Binary ASCII	3 0011 4 0100	1 1110 > 1 0001 A	0011 4 0100 I	1100 < 4 0100 >	0100 3 0011	1000 H E 1110	0100 F 0 0000	0101 E A 1010 n
ASCII Hexadecimal Binary ASCII Hexadecimal	3 0011 4 0100 3	L 1110 > 1 0001 A C	0011 4 0100 5	1100 < 4 0100 0 4	0100 3 0011 4	1000 H E 11110 > 9	0100 H 00000 5	0101 A 1010 n 4
ASCII Hexadecimal Binary ASCII Hexadecimal Binary	3 0011 4 0100 3 0011	L 1110 > 1 0001 A C 1100	0011 4 0100 5 0101	1100 < 4 0100 0 4 0100	0100 3 0011 4 0100	1000 H E 1110 > 9 1001	0100 F 00000 5 0101	0101 E A 1010 n 4 0100

Hexadecimal	4	С	4	5	3	E	3	4
Binary	0100	1100	0100	0101	0011	1110	0011	0100
ASCII]	[]	E		>	2	4
Hexadecimal	3	0	3	4	2	0	4	Е
Binary	0011	0000	0011	0100	0010	0000	0100	1110
ASCII	(0		4			1	N
						-	-	
Hexadecimal	6	F	7	4	2	0	4	6
Binary	0110	1111	0111	0100	0010	0000	0100	0110
ASCII	(0		t]	F
		1	r	1	T	1	1	1
Hexadecimal	6	F	7	5	6	E	6	4
Binary	0110	1111	0111	0101	0110	1110	0110	0100
ASCII	(0	1	u		n		d
								-
Hexadecimal	3	С	2	F	5	4	4	9
Binary	0011	1100	0010	1111	0101	0100	0100	1001
ASCII	<	<		/		Т	-	Ι
		1	r	1	T		1	1
Hexadecimal	5	4	4	C	4	5	3	E
Binary	0101	0100	0100	1100	0100	0101	0011	1110
ASCII		Г	L			E	2	>
		1	r	1	T	1	1	1
Hexadecimal	0	A	3	C	2	F	4	8
Binary	0000	1010	0011	1100	0010	1111	0100	1000
ASCII	/	n		<		/	ŀ	I
r		1		1	1			1
Hexadecimal	4	5	4	1	4	4	3	E
Binary	0100	0101	0100	0001	0100	0100	0011	1110
ASCII]	E	1	4		D	2	>
r		1		1	1			1
Hexadecimal	3	C	4	2	4	F	4	4
Binary	0011	1100	0100	0010	0100	1111	0100	0100
ASCII	<	<]	B		0	I)
	-	1 -	-	1 _	1 -			_
Hexadecimal	5	9	3	E	0	A	3	C
Binary	0101	1001	0011	1110	0000	1010	0011	1100
ASCII	, in the second s	Y		>		\n	<	
			, , , , , , , , , , , , , , , , , , ,		,		1	
Hexadecimal	4	8	3	1	3	E	4	E
Binary	0100	1000	0011	0001	0011	1110	0100	1110
ASCII]	H		1		>	1	V

Hexadecimal	6	F	7	4	2	0	4	6	
Binary	0110	1111	0111	0100	0010	0000	0100	0110	
ASCII	()	1	t			I	Ĩ	
Hexadecimal	6	F	7	5	6	E	6	4	
Binary	0100	1111	0111	0101	0110	1110	0110	0100	
ASCII	()	ι	l	1	1	(1	
		r	r	r	1	r	r		
Hexadecimal	3	С	2	F	4	8	3	1	
Binary	0011	1100	0010	1111	0100	1000	0011	0001	
ASCII	<	<	,	/	H	H]		
		r	r	r	1	r	r		
Hexadecimal	3	E	0	Α	5	4	6	8	
Binary	0011	1110	0000	1010	0101	0100	0110	1000	
ASCII	>	>	\.	n		Γ	ł	1	
					-				
Hexadecimal	6	5	2	0	7	2	6	5	
Binary	0110	0101	0010	0000	0111	0010	0110	0101	
ASCII	(9			1	r	e		
Hexadecimal	7	1	7	5	6	5	7	3	
Binary	0111	0001	0111	0101	0110	0101	0111	0011	
ASCII	(4	l	u		e	5	5	
Hexadecimal	7	4	6	5	6	4	2	0	
Binary	0111	0100	0110	0101	0110	0100	0010	0000	
ASCII	1	t	(e	(1			
Hexadecimal	5	5	5	2	4	С	2	0	
Binary	0101	0101	0101	0010	0100	1100	0010	0000	
ASCII	J	J	I	R	I				
Hexadecimal	2	F	7	Е	6	3	7	3	
Binary	0010	1111	0111	1110	0110	0011	0111	0011	
ASCII	,	/	~	~		c	5	3	
Hexadecimal	6	9	7	3	3	4	3	1	
Binary	0110	1001	0111	0011	0011	0100	0011	0001	
ASCII	-	i	5	5	4	1	1		
Hexadecimal	3	0	2	F	3	2	3	0	
Binary	0011	0000	0010	1111	0011	0010	0011	0000	
ASCII	()	,	/		2	()	

Hexadecimal	3	0	3	3	2	F	6	2
Binary	0011	0000	0011	0011	0010	1111	0110	0010
ASCII		0		3		/	1	b
Hexadecimal	6	С	7	5	6	5	7	4
Binary	0110	1100	0111	0101	0110	0101	0111	0100
ASCII		1		u		e		t
Hexadecimal	6	5	6	3	6	8	2	F
Binary	0110	0101	0110	0011	0110	1000	0010	1111
ASCII		e		c		h		/
Hexadecimal	5	2	6	5	7	1	7	5
Binary	0101	0010	0110	0101	0111	0001	0111	0101
ASCII]	R		e		q	1	u
			1			1		
Hexadecimal	6	9	7	2	6	5	6	D
Binary	0110	1001	0111	0010	0110	0101	0110	1101
ASCII		1	r e		1	n		
			1					
Hexadecimal	6	5	6	Е	7	4	7	3
Binary	0110	0101	0110	1110	0111	0100	0111	0011
ASCII		e		n		t		S
			1					
Hexadecimal	2	0	5	3	7	0	6	5
Binary	0010	0000	0101	0011	0111	0000	0110	0101
ASCII				S		р	е	
			•			1		
Hexadecimal	6	3	6	9	6	6	6	9
Binary	0110	0011	0110	1001	0110	0110	0110	1001
ASCII		c		i		f		i
			1					
Hexadecimal	6	3	6	1	7	4	6	9
Binary	0110	0011	0110	0001	0111	0100	0110	1001
ASCII	(;		ì		t	I	i
					1			
Hexadecimal	6	F	6	Е	2	0	4	4
Binary	0110	1111	0110	1110	0010	0000	0100	0100
ASCII	-	, D	-	n				D
			1		1			
Hexadecimal	6	Г	(2	7	5	6	D
	0	F	6	3	/	3	0	
Binary	0110	F 1111	0110	0011	0111	0101	0110	1101

Hexadecimal	6	5	6	Е	7	4	2	0
Binary	0110	0101	0110	1110	0111	0100	0010	0000
ASCII	(e	1	1	1	t		
Hexadecimal	4	6	6	9	6	Е	6	1
Binary	0100	0110	0110	1001	0110	1110	0110	0001
ASCII]	- -	j	ĺ	n		8	ı
Hexadecimal	6	С	5	F	6	6	6	9
Binary	0110	1100	0101	1111	0110	0110	0110	1001
ASCII		1	-	-	j	f	j	
			1		1		1	
Hexadecimal	6	С	6	5	7	3	2	F
Binary	0110	1100	0110	0101	0111	0011	0010	1111
ASCII		1)	5	5	/	/
Hexadecimal	6	9	6	D	6	1	6	7
Binary	0110	1001	0110	1101	0110	0001	0110	0111
ASCII		i	n	n		1		5
Hexadecimal	6	5	3	0	3	0	3	2
Binary	0110	0101	0011	0000	0011	0000	0011	0010
ASCII	(2	0		()	2000	2
		-		-		-		
Hexadecimal	2	Е	6	7	6	9	6	6
Binary	0010	1110	0110	0111	0110	1001	0110	0110
ASCII			ş	2		ĺ	t	[
			· · · · ·					
Hexadecimal	2	0	7	7	6	1	7	3
Binary	0001	0000	0111	0111	0110	0001	0111	0011
ASCII			v	V		1	5	5
Hexadecimal	2	0	6	Е	6	F	7	4
Binary	0010	0000	0110	1110	0110	1111	0111	0100
ASCII			1	1	()	1	
						-		-
Hexadecimal	2	0	6	6	6	F	7	5
Binary	0010	0000	0110	0110	0110	1111	0111	0101
ASCII				f	()	1	1
						-		
Hexadecimal	6	Е	6	4	2	0	6	F
Binary	0110	1110	0110	0100	0010	0000	0110	1111
ASCII	1	1	(1			()
		-						

Hexadecimal	6	Е	2	0	7	4	6	8	
Binary	0110	1110	0010	0000	0111	0100	0110	1000	
ASCII	1	1				t	ł	ı	
Hexadecimal	6	9	7	3	2	0	7	3	
Binary	0110	1001	0111	0011	0010	0000	0111	0011	
ASCII		i	5	3			5	3	
Hexadecimal	6	5	7	2	7	6	6	5	
Binary	0110	0101	0111	0010	0111	0110	0110	0101	
ASCII	(e	1	ſ	,	V	(e	
Hexadecimal	7	2	2	Е	3	С	5	0	
Binary	0111	0010	0010	1110	0011	1100	0101	0000	
ASCII]	r			<	<	р		
Hexadecimal	3	Е	0	А	3	С	4	8	
Binary	0011	1110	0000	1010	0011	1100	0100	1000	
ASCII		>	\n <				H	I	
Hexadecimal	5	2	3	Е	0	4	3	С	
Binary	0101	0010	0011	1110	0000	0100	0011	1100	
ASCII	I	λ	>	>	/	n	<	<	
Hexadecimal	4	1	4	4	4	4	5	2	
Binary	0100	0001	0100	0100	0100	0100	0101	0010	
ASCII	I	A	Ι)	Ι)	ŀ	٤	
Hexadecimal	4	5	5	3	5	3	3	Е	
Binary	0100	0101	0101	0011	0101	0011	0011	1110	
ASCII]	Ξ	C.	5	C L	5	>	>	
Hexadecimal	4	1	7	0	6	1	6	3	
Binary	0100	0001	0111	0000	0110	0001	0110	0011	
ASCII	I	4	1)		a	(2	
Hexadecimal	6	8	6	5	2	F	3	1	
Binary	0110	1000	0110	0101	0010	1111	0011	0001	
ASCII]	1	(/]		
Hexadecimal	2	Е	3	3	2	Е	3	2	
Binary	0010	1110	0011	0011	0010	1110	0011	0010	
2		•	1		1	•	1		
Hexadecimal	3	4	2	0	5	3	6	5	
-----------------	---------	------	------	----------	------	----------	------	------	
Binary	0011	0100	0010	0000	0101	0011	0110	0101	
ASCII	2	4				8	6		
						-			
Hexadecimal	7	2	7	6	6	5	7	2	
Binary	0111	0010	0111	0110	0110	0101	0111	0010	
ASCII	1	r	v	V	(9	1	[
Hexadecimal	2	0	6	1	7	4	2	0	
Binary	0010	0000	0110	0001	0111	0100	0010	0000	
ASCII			6	a		t			
		I			I	I	I		
Hexadecimal	3	1	7	2	6	5	7	3	
Binary	0011	0001	0111	0010	0110	0101	0111	0011	
ASCII	:	a	1	r	(e	5	5	
		1	r	r	1	1	1		
Hexadecimal	2	E	6	3	7	3	2	Е	
Binary	0010	1110	0110	0011	0111	0011	0010	1110	
ASCII			(c	5	8			
		1			1	1	1		
Hexadecimal	7	3	6	9	6	5	6	E	
Binary	0111	0011	0110	1001	0110	0101	0110	1110	
ASCII	:	S		i	(e	ľ	1	
		1			1	1	1		
Hexadecimal	6	1	2	E	6	5	6	4	
Binary	0110	0001	0010	1110	0110	0101	0110	0100	
ASCII	a . e d					1			
		-			-				
Hexadecimal	7	5	2	0	5	0	6	F	
Binary	0111	0101	0010	0000	0101	0000	0110	1111	
ASCII	1	l]	D	()	
** 1 • 1	_		_					0	
Hexadecimal	7	2	7	4	2	0	3	8	
Binary	0111	0010	0111	0100	0010	0000	0011	1000	
ASCII		r	1	t			8	3	
TT 1 · 1	2	0	2	a		Б	4	1	
Hexadecimal	3	0	3	<u> </u>	2	F	4	l	
Binary	0011	0000	0010	1100	0010		0100	0001	
ASCII	(J	<	<		/	A	4	
TT 1 · ·	4	4	4	4			4	~	
Hexadecimal	4	4	4	4	5	2	4	5	
Binary	0100	0100	0100	0100	0101	0010	0100	0101	
ASCII	III)	I)	I	<u> </u>	H	-j	

Hexadecimal	5	3	5	3	3	Е	0	А
Binary	0101	0011	0101	0011	0011	1110	0000	1010
ASCII	(S	C L	5	>	>	/1	n
Hexadecimal	3	С	2	F	4	2	4	F
Binary	0011	1100	0010	1111	0100	0010	0100	1111
ASCII	<	<		/	I	3	()
Hexadecimal	4	4	5	9	3	Е	3	С
Binary	0100	0100	0101	1001	0011	1110	0011	1100
ASCII	Ι)	Y	ľ	>	>	<	<
Hexadecimal	2	F	4	8	5	4	4	D
Binary	0010	1111	0100	1000	0101	0100	0100	1101
ASCII		/	I	H		Γ	N	1

Hexadecimal	4	С	3	Е	0	Α
Binary	0100	1100	0011	1110	0000	1010
ASCII	L		>	>	/	n

Start Bit: 0

2.2.12 IP PDU for the selected SSH PDU

IP PDU > *IP Version* for the selected SSH PDU

Field Name: IP Version

Description: Version is a 4-bit field that indicates the format of the Internet header.

Data value (decimal): 4

Data values in other bases:

Hexadecimal	4
Binary	0100

Start Bit: 0

IP PDU > *Header Length* for the selected SSH PDU

Field Name: Header Length

Description: The IHL field is a 4-bit field indicating the length of the Internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Data values in other bases:

Hexadecimal	5
Binary	0101

Start Bit: 4

IP PDU > *Type of Service* for the selected SSH PDU

Field Name: Type of Service

Description: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a data gram through a particular network.

The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

Bits 0-2: Precedence	
Bit 3: (D) $0 =$ Normal Delay	1 = Low Delay
Bit 4: (T) 0 = Normal Throughput	1 = High Throughput
Bit 5: (R) $0 =$ Normal Reliability	1 = High Reliability

Precedence:

111 = Network Control	
110 = Internetwork Control	
101 = CRITIC/ECP	
100 = Flash Overrided	

Data value (decimal): 16

Data values in other bases:

Hexadecimal	1	0
Binary	0001	0000

011 = Flash 010 = Immediate 001 = Priority 000 = Routine

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 0 in decimal.

Start Bit: 8

IP PDU > *Total Length of Ethernet Frame* for the selected **SSH PDU**

Field Name: Total Length of Ethernet Frame

Description: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including Internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Data values (decimal): 100

Data values in other bases:

Hexadecimal	0	0	6	4
Binary	0000	0000	0110	0100

Start Bit: 16

IP PDU > *Identification* for the selected SSH PDU

Field Name: Identification

Description: Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a data gram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the data gram or any fragment could be alive in the Internet.

Data value (decimal): 12490

Data values in other bases:

Hexadecimal	3	0	С	А
Binary	0011	0000	1100	1010

• The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.

• Mirage's data value was 12942 in decimal.

Start Bit: 32

IP PDU > *Flags* for the selected SSH PDU

Field Name: Flags

Description: Flags is a 3-bit field that indicates directions for fragmentation.

Bit 0: reserved, must be 0	
Bit 1: (DF) 0 = May Fragment	1 = Don't Fragment
Bit 2: (MF) 0 = Last Fragment	1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 001 in binary.

Start Bit: 4

IP PDU > *Fragment Offset* for the selected SSH PDU

Field Name: Fragment Offset

Description: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0	0	0
Binary	0000	0000	0000	0000

Start Bit: 51

IP PDU > *Time to Live* for the selected SSH PDU

Field Name: Time to Live

Description: Time to Live is an 8-bit field that indicates the maximum time the data gram is allowed to remain in the Internet. If this field contains the value 0, then the data gram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the data gram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum data gram lifetime.

Data value (decimal): 64

Data values in other bases:

Hexadecimal	4	0
Binary	0100	0000

Start Bit: 64

IP PDU > *Protocol* for the selected SSH PDU

Field Name: Protocol

Description: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

Dec He	ex	Protocol	Dec	Hex	Protocol
0	00	Reserved	22	16	Multiplexing
1	01	ICMP	23	17	DCN
2	02	Unassigned	24	18	TAC Monitoring
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network
5	05	ST	100	64	SATNET and
					Backroom EXPAK
6	06	ТСР	101	65	MIT Subnet
					Support
7	07	UCL	102-104	66-68	Unassigned
10	0A	Unassigned	105	69	SATNET
		-			Monitoring
11	0B	Secure	106	6A	Unassigned
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core
		-			Utility
13	0D	NVP	110-113	6E-71	Unassigned
14	0E	PUP	114	72	Backroom SATNET
					Monitoring
15	0F	Pluribus	115	73	Unassigned
16	10	SSH	116	74	WIDEBAND
					Monitoring
17	11	XNET	117	75	WIDEBAND
					EXPAK
20	14	Chaos	120-376	78-0178	Unassigned
21	15	User Datagram	377	0179	Reserved
		-			

Data value (decimal): 6

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110

Start Bit: 72

Length: 8

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected SSH PDU

Field Name: Header Checksum

Description: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Data value (decimal): 34734

Data values in other bases:

Hexadecimal	8	7	А	Е
Binary	1000	0111	1010	1110

Start Bit: 80

IP PDU > *Source IP Address* for the selected SSH PDU

Field Name: Source IP Address

Description: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Data value (decimal): 192.168.0.101

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101

Start Bit: 96

IP PDU > *Destination IP Address* for the selected SSH PDU

Field Name: Destination IP Address

Description: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Data value (decimal): 192.168.0.102

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	6	6
Binary	1100	0000	1010	1000	0000	0000	0110	0110

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 192.168.0.39 in decimal.

Start Bit: 128

2.2.13 TCP PDU for the selected SSH PDU

IP > TCP PDU > *Source Port Number* for the selected SSH PDU

Field Name: Source Port Number

Description: This 16-bit number represents the name of the application that sent the data in the IP packet.

Data value (decimal): 1243

Data values in other bases:

Hexadecimal	0	4	D	В
Binary	0000	0100	1101	1011

Start Bit: 0

IP > TCP PDU > Destination Port Number for the selected SSH PDU

Field Name: Destination Port Number

Description:

This 16-bit number represents the name of the application that is to receive the data contained within the IP packet. This is one of the major differences between a Layer 3 and a Layer 4 header: the Layer 3 header contains the IP address of the computer that is to receive the IP packet; once that packet has been received, the port address in the Layer 4 header ensures that the data contained within that IP packet is passed to the correct application on that computer.

This key indicates assigned port number values:

Dec	Port Numbers
0	Reserved
1-32767	Internet registered ("well-known") protocols
32768-98303	Reserved, to allow TCPv7-TCPv4 conversion
98304 & up	Dynamic assignment

Data value (decimal): 22

Data values in other bases:

Hexadecimal	0	0	1	6
Binary	0000	0000	0001	0000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 1243 in decimal.

Start Bit: 16

Length: 16

Source: http://www.zvon.org/tmRFC/RFC1475/Output/chapter4.html

IP > TCP PDU > *Sequence Number* for the selected SSH PDU

Field Name: Sequence Number

Description: TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Data value (decimal): 4008673261

Data values in other bases:

Hexadecimal	Е	Е	Е	F	7	F	Е	D
Binary	1110	1110	1110	1111	0111	1111	1110	1101

Start Bit: 32

IP > TCP PDU > *Acknowledgement Number* for the selected SSH PDU

Field Name: Acknowledgement Number

Description: This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Data value (decimal): 3798775616

Data values in other bases:

Hexadecimal	Е	2	6	С	В	7	4	0
Binary	1110	0010	0110	1100	1011	0111	0100	0000

<u>Start Bit</u>: 64

IP > TCP PDU > *Length or Offset* for the selected SSH PDU

Field Name: Length or Offset

Description: This is identical in concept to the header length in an IP packet, except this time it indicates the length of the TCP header.

Data value (decimal): 8

Data values in other bases:

Hexadecimal	0	8
Binary	0000	1000

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 32 in decimal.

Start Bit: 96

IP > TCP PDU > *Control Flags* for the selected SSH PDU

Field Name: Control Flags

Description: Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

- Urgent (URG)
- Acknowledgement (ACK)
- Push (PSH)
- Reset (RST)
- Synchronize (SYN)
- Finish (FIN)

Data value (decimal): 24

Data values in other bases:

Hexadecimal	1	8
Binary	0001	1000

Start Bit: 106

IP > TCP PDU > *Window Size* for the selected SSH PDU

Field Name: Window Size

Description: Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Data value (decimal): 32120

Data values in other bases:

Hexadecimal	7	D	7	8
Binary	0111	1101	0111	1000

Start Bit: 112

IP > TCP PDU > *TCP Checksum* for the selected **SSH PDU**

Field Name: TCP Checksum

Description: Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Data value (decimal): 35786

Data values in other bases:

Hexadecimal	8	В	С	Α
Binary	1000	1011	1100	1010

Start Bit: 128

IP > TCP PDU > *Options* for the selected SSH PDU

Field Name: Options

Description: Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. Again, if an option does not fill up a 32-bit word, it will be filled in with padding bits.

Data value: 01 01 08 0A 1B 25 F3 A1 0B DD 73 58

- The data value used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's data value was 01 01 08 0A 0B D1 8D EC 1A AC 06 AB in hexidecimal.

Start Bit: 160

Length: Variable

2.2.14 IP PDU for the selected TELNET PDU

IP PDU > *IP Version* for the selected TELNET PDU

Field Name: IP Version

Description: Version is a 4-bit field that indicates the format of the Internet header.

Data value (decimal): 4

Data values in other bases:

Hexadecimal	4
Binary	0100

Start Bit: 0

IP PDU > *Header Length* for the selected **TELNET PDU**

Field Name: Header Length

Description: The IHL field is a 4-bit field indicating the length of the Internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Data value (decimal): 5

Data values in other bases:

Hexadecimal	5
Binary	0101

Start Bit: 4

IP PDU > *Type of Service* for the selected **TELNET PDU**

<u>Field Name</u>: *Type of Service*

Description: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a data gram through a particular network.

The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

Bits 0-2: Precedence	
Bit 3: (D) $0 =$ Normal Delay	1 = Low Delay
Bit 4: (T) $0 =$ Normal Throughput	1 = High Throughput
Bit 5: (R) $0 =$ Normal Reliability	1 = High Reliability

Precedence:

011 = Flash
010 = Immediate
001 = Priority
000 = Routine

Data value (decimal): 00

Data values in other bases:

Hexadecimal	0	0
Binary	0000	0000

Start Bit: 8

IP PDU > *Total Length* for the selected **TELNET PDU**

Field Name: Total Length

Description: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including Internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Data values (decimal): 125

Data values in other bases:

Hexadecimal	00	7D
Binary	1111	1101

- The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary sequence was 0011 1110

Start Bit: 16

IP PDU > *Identification* for the selected **TELNET PDU**

Field Name: Identification

Description: Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a data gram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the data gram or any fragment could be alive in the Internet.

Data value (decimal): 51102

Data values in other bases:

Hexadecimal	С	7	9	Е
Binary	1100	0111	1001	1110

• The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.

• Mirage's binary sequence was 1100 0111 0101 0111

Start Bit: 32

IP PDU > *Flags* for the selected TELNET PDU

Field Name: Flags

Description:Flags is a 3-bit field that indicates directions for fragmentation.Bit 0: reserved, must be 0Bit 1: (DF) 0 = May FragmentBit 2: (MF) 0 = Last Fragment1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

Start Bit: 48

IP PDU > *Fragment Offset* for the selected **TELNET PDU**

Field Name: Fragment Offset

Description: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0	0	0
Binary	0000	0000	0000	0000

Start Bit: 51

IP PDU > *Time to Live* for the selected **TELNET PDU**

Field Name: Time to Live

Description: Time to Live is an 8-bit field that indicates the maximum time the data gram is allowed to remain in the Internet. If this field contains the value 0, then the data gram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the data gram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum data gram lifetime.

Data value (decimal): 64

Data values in other bases:

Hexadecimal	4	0
Binary	0100	0000

Start Bit: 64

IP PDU > *Protocol* for the selected TELNET PDU

Field Name: Protocol

Description: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

Dec	Hex Protocol		Dec	Hex	Protocol		
0	00	Reserved	22	16	Multiplexing		
1	01	ICMP	23	17	DCN		
2	02	Unassigned	24	18	TAC Monitoring		
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned		
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network		
5	05	ST	100	64	SATNET and		
					Backroom EXPAK		
6	06	ТСР	101	65	MIT Subnet		
					Support		
7	07	UCL	102-104	66-68	Unassigned		
10	0A	Unassigned	105	69	SATNET		
					Monitoring		
11	0B	Secure	106	6A	Unassigned		
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core		
					Utility		
13	0D	NVP	110-113	6E-71	Unassigned		
14	0E	PUP	114	72	Backroom SATNET		
					Monitoring		
15	0F	Pluribus	115	73	Unassigned		
16	10	Telnet	116	74	WIDEBAND		
					Monitoring		
17	11	XNET	117	75	WIDEBAND		
					EXPAK		
20	14	Chaos	120-376	78-0178	Unassigned		
21	15	User Datagram	377	0179	Reserved		

Data value (decimal): 6

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110

Start Bit: 72

Length: 8

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected **TELNET PDU**

Field Name: Header Checksum

Description: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Data value (decimal): 61695

Data values in other bases:

Hexadecimal	F	0	F	F
Binary	1111	0000	1111	1111

- The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary sequence was 1111 0001 1000 0101

Start Bit: 80

IP PDU > *Source IP Address* for the selected **TELNET PDU**

Field Name: Source IP Address

Description: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet. The source address of the sender of the IP data gram: NET ID ADDRESS RANGE 000-127 Class A 10.0.0.0-10.225.225 128-191 Class B 172.16.0.0-172.31.255.255 192-223 Class C 192.168.0.0-192.168.255.255 224-239 Class D (multicast) 240-255 Class E (experimental) HOST ID 0 Network value; broadcast(old) 255 Broadcast

Data value (decimal): 192.168.0.101

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101

Start Bit: 96

IP PDU > *Destination IP Address* for the selected **TELNET PDU**

Field Name: Destination IP Address

Description: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet. The IP address of the host where this data gram is being sent: NET ID ADDRESS RANGE 000-127 Class A 10.0.0-10.225.225 128-191 Class B 172.16.0.0-172.31.255.255 192-223 Class C 192.168.0.0-192.168.255.255 224-239 Class D (multicast) 240-255 Class E (experimental) HOST ID 0 Network value; broadcast(old) 255 Broadcast

Data value (decimal): 192.168.0.39

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	2	7
Binary	1100	0000	1010	1000	0000	0000	0010	0111

Start Bit: 128

IP > TCP PDU > *Options* for the selected **TELNET PDU**

Field Name: Options

Description: The options may or may not appear in Ethernet packets. Options have to be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type Case 2: An option-type octet, an option-length octet, and the actual option-data octets

Data value: *Not applicable*

Start Bit: 160

Length: Variable (0-40)
2.2.15 TCP PDU for the selected TELNET PDU

IP > TCP PDU > Source Port Number for the selected **TELNET PDU**

Field Name: Source Port Number

Description: A 16-bit address assigned by the sending computer, to the application program sending data as TCP data grams.

Data value (ASCII): TELNET (23)

Data values in other bases:

Hexadecimal	0	0	1	7	
Binary	0000	0000	0001	0111	

Start Bit: 0

IP > TCP PDU > Destination Port Number for the selected **TELNET PDU**

Field Name: Destination Port Number

Description: This 16-bit number represents the name of the application that is to receive the data contained within the IP packet. This is one of the major differences between a Layer 3 and a Layer 4 header: the Layer 3 header contains the IP address of the computer that is to receive the IP packet; once that packet has been received, the port address in the Layer 4 header ensures that the data contained within that IP packet is passed to the correct application on that computer.

Dec	Port Numbers
0	Reserved
1-32767	Internet registered ("well-known") protocols
32768-98303	Reserved, to allow TCPv7-TCPv4 conversion
98304 & up	Dynamic assignment

Data value (decimal): 32805

Data values in other bases:

Hexadecimal	8	0	2	5	
Binary	1000	0000	0010	0101	

Start Bit: 16

Length: 16

Source: http://www.zvon.org/tmRFC/RFC1475/Output/chapter4.html

IP > TCP PDU > *Sequence Number* for the selected **TELNET PDU**

Field Name: Sequence Number

Description: TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Data value (decimal): 263530302

Data values in other bases:

Hexadecimal	9	D	1	3	8	8	6	D
Binary	1001	1101	0001	0011	1000	1000	0110	1101

- The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary sequence was 1001 1101 0001 0011 1000 1000 0000 1000

Start Bit: 32

IP > TCP PDU > *Acknowledgement Number* for the selected **TELNET PDU**

Field Name: Acknowledgement Number

Description: The receiving computer to acknowledge which packets have successfully arrived uses this number. This number will be the sequence number of the next packet the receiver is ready to receive.

Data value: 2526101273

Data values in other bases:

Hexadecimal	9	6	9	1	3	F	1	9
Binary	1001	0110	1001	0001	0011	1111	0001	1001

- The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary sequence was 1001 0110 1001 0001 0011 1111 0000 0101

Start Bit: 64

IP > TCP PDU > *Length* for the selected **TELNET PDU**

Field Name: Length

Description: This is identical in concept to the header length in an IP packet, except this time it indicates the length of the TCP header.

Data value (decimal): 128

Data values in other bases:

Hexadecimal	8	0
Binary	1000	0000

<u>Start Bit</u>: 96

IP > TCP PDU > *Reserved* for the selected **TELNET PDU**

Field Name: Reserved

Description: 4 bits; set to 0 ECN bits (used when ECN employed; else 00) CWR (1=sender has cut congestion window in half ECN-Echo (1=receiver has cut congestion window in half

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0
Binary	0000	0000

Start Bit: 100

IP > TCP PDU > *Control Flags* for the selected **TELNET PDU**

Field Name: Control Flags

Description: Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

- Urgent (URG)
- Acknowledgement (ACK)
- Push (PSH)
- Reset (RST)
- Synchronize (SYN)
- Finish (FIN)

Data value (decimal): 24

Data values in other bases:

Hexadecimal	1	8
Binary	0001	1000

Start Bit: 106

IP > TCP PDU > Window Size for the selected **TELNET PDU**

Field Name: Window Size

Description: Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Data value (decimal): 32120

Data values in other bases:

Hexadecimal	7	D	7	8
Binary	0111	1101	0111	1000

Start Bit: 116

IP > TCP PDU > *TCP Checksum* for the selected **TELNET PDU**

Field Name: TCP Checksum

Description: Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Data value (decimal): 63307

Data values in other bases:

Hexadecimal	F	7	4	В	
Binary	1111	0111	0100	1011	

- The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary sequence was 0101 1001 1000 1001

Start Bit: 128

IP > TCP PDU > *Urgent Pointer* **for the selected TELNET PDU**

Field Name: Urgent Pointer

Description: A 16-bit pointer to the last byte within the segment, which is urgent and should be expected in delivery-valid only if URG flag is set.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0	0	0	
Binary	0000	0000	0000	0000	

Start Bit: 144

IP > TCP PDU > *Options* for the selected **TELNET PDU**

Field Name: Options

Description: Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. Again, if an option does not fill up a 32-bit word, it will be filled in with padding bits.

Data value (hexadecimal): 01 01 08 0A 0B D1 8D EC 1A AC 06 AB

Data values in other bases:

Hexadecimal	0	1	0	1	0	8	0	А	0	В
Binary	0000	0001	0000	0001	0000	1000	0000	1010	0000	1011

Hexadecimal	D	1	8	D	Е	С	1	Α	А	С
Binary	1101	0001	1000	1101	1110	1100	0001	1010	1010	1100

Hexadecimal	0	6	Α	В
Binary	0000	0110	1010	1011

2.2.16 TELNET PDU for the selected TELNET PDU

IP >TCP > TELNET PDU for the TELNET Packet

Field Name: Telnet PDU

Description: PASS (Password)

The argument field is a Telnet string specifying the user's password. This command must be immediately preceded by the user name command, and, for some sites, completes the user's identification for access control.

What is contained in the Packet:

Request: PASS

Data Values (hexadecimal): 50 61 73 73 77 6F 72 64 3A 20

Data Values in Other Bases:

Hexadecimal	5	0	6	1	7	3	7	7	6	F
Binary	0101	0000	0110	0001	0111	0011	0111	0111	0110	1111
ASCII	I)	ć	à	5	3	v	V	C)

Hexadecimal	7	2	6	4	3	А	2	0
Binary	0111	0010	0110	0100	0011	1010	0010	0000
ASCII	1	ſ	d				0)

RFC Link: http://www.ietf.org/rfc/rfc0959.txt?number=959

2.2.17 ARP PDU for the selected ARP PDU

ARP PDU> *Hardware Type* > for the selected **ARP PDU**

Field Name: Hardware Type

Description: The physical media that communicates on the network.

Data value (decimal): 1

Data values in other bases:

Hexadecimal	0	0	0	1
Binary	0000	0000	0000	0001

Start Bit: 0

ARP PDU > *Protocol Type* > for the selected **ARP PDU**

Field Name: Protocol Type

Description: Defines the protocol that the terminals are using to connect with each other.

Data value (decimal): 2048

Data values in other bases:

Hexadecimal	0	8	0	0
Binary	0000	1000	0000	0000

Start Bit: 16

ARP PDU > *Hardware size* > for the selected **ARP PDU**

Field Name: Hardware size

Description: This field determines the type of hardware used.

Data value (decimal): 6

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110

Start Bit: 32

ARP PDU >*Protocol size*>for the selected ARP PDU

Field Name: Protocol size

Description: Determines the protocol used in the request or response. .

Data value (decimal): 2

Data values in other bases:

Hexadecimal	0	2
Binary	0000	0010

- The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary sequence was 0000 0100

Start Bit: 40

ARP PDU > *Opcode Request*> for the selected ARP PDU

Field Name: Opcode Request

Description: Determines weather a request or a response is being called upon.

Data value (decimal): 1

Data values in other bases:

Hexadecimal	0	0	0	1
Binary	0000	0000	0000	0001

<u>Start Bit</u>: 48

Field Name: Sender Hardware Address

Description: The Physical address or MAC address of the network adapter of the sender's terminal. 00000C Cisco 00000E Fujitsu 00000F NeXT 000010 Sytek 00001D Cabletron 000020 DIAB (Data Intdustrier AB) 000022 Visual Technology 00002A TRW 000032 GPT Limited (reassigned from GEC Computers Ltd) 00005A S & Koch 00005E IANA 000065 Network General 00006B MIPS 000077 MIPS 00007A Ardent 000089 Cayman Systems Gatorbox 000093 Proteon 00009F Ameristar Technology 0000A2 Wellfleet 0000A3 Network Application Technology 0000A6 Network General (internal assignment, not for products) X-terminals 0000A7 NCD 0000A9 Network Systems 0000AA Xerox Xerox machines 0000B3 CIMLinc 0000B7 Dove Fastnet 0000BC Allen-Bradley 0000C0 Western Digital 0000C5 Farallon phone net card 0000C6 HP Intelligent Networks Operation (formerly Eon Systems) 0000C8 Altos 0000C9 Emulex **Terminal Servers** 0000D7 Dartmouth College (NED Router) 0000D8 3Com? Novell? PS/2 0000DD Gould 0000DE Unigraph 0000E2 Acer Counterpoint 0000EF Alantec 0000FD High Level Hardvare (Orion, UK)

000102 BBN BBN internal usage (not registered) 0020AF 3COM ??? 001700 Kabel 008064 Wyse Technology / Link Technologies 00802B IMAC ??? 00802D Xylogics, Inc. Annex terminal servers 00808C Frontier Software Development 0080C2 IEEE 802.1 Committee 0080D3 Shiva 00AA00 Intel 00DD00 Ungermann-Bass 00DD01 Ungermann-Bass 020701 Racal InterLan 020406 BBN BBN internal usage (not registered) 026086 Satelcom MegaPac (UK) 02608C 3Com IBM PC; Imagen; Valid; Cisco Masscomp; Silicon Graphics; Prime EXL 02CF1F CMC 080002 3Com (Formerly Bridge) 080003 ACC (Advanced Computer Communications) 080005 Symbolics Symbolics LISP machines 080008 BBN 080009 Hewlett-Packard 08000A Nestar Systems 08000B Unisys 080011 Tektronix, Inc. 080014 Excelan BBN Butterfly, Masscomp, Silicon Graphics 080017 NSC 08001A Data General 08001B Data General 08001E Apollo Sun machines 080020 Sun 080022 NBI 080025 CDC 080026 Norsk Data (Nord) 080027 PCS Computer Systems GmbH Explorer 080028 TI 08002B DEC 08002E Metaphor 08002F Prime Computer Prime 50-Series LHC300 080036 Intergraph CAE stations 080037 Fujitsu-Xerox 080038 Bull 080039 Spider Systems 080041 DCA Digital Comm. Assoc. 080045 ???? (maybe Xylogics, but they claim not to know this number) 080046 Sony

Sequent	
Univation	
Encore	
BICC	
Stanford Univ	versity
??? D	ECsystem-20
IBM	
Comdesign	
Ridge	
Silicon Graph	nics
Concurrent	Masscomp
DDE (Danish	n Data Elektronik A/S)
Vitalink	TransLAN III
XIOS	
Imagen/QMS	
Xyplex	terminal servers
Kinetics	AppleTalk-Ethernet interface
Pyramid	
XyVision	XyVision machines
Retix Inc	Bridges
HDS ???	
AT&T	
DEC	obsolete
DEC	obsolete
DEC	obsolete
DEC	Global physical address for some DEC machines
DEC	Local logical address for systems running DECNET
	Sequent Univation Encore BICC Stanford Univ ??? D IBM Comdesign Ridge Silicon Graph Concurrent DDE (Danish Vitalink XIOS Imagen/QMS Xyplex Kinetics Pyramid XyVision Retix Inc HDS ??? AT&T DEC DEC DEC DEC DEC DEC

Data value (hexadecimal): 00:00:E6: 34:ED:A3

Data values in other bases: Not Applicable

<u>Start Bit</u>: 64

ARP PDU > Sender Protocol Address > for the selected ARP PDU

Field Name: Sender Protocol Address

Description: The protocol of the sender computer. This is used to identify the senders Protocol.

Data value (decimal): 192.168.0.101

Hexadecimal	С	0	А	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101

- The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary sequence was 1100 0000 1010 1000 0000 0000 0001 0110

Start Bit: 112

ARP PDU > *Target Hardware* > for the selected **ARP PDU**

Field Name: Target Hardware

Description: The Physical address or MAC address of the network adapter of the target terminal. 00000C Cisco 00000E Fujitsu 00000F NeXT 000010 Sytek 00001D Cabletron 000020 DIAB (Data Intdustrier AB) 000022 Visual Technology 00002A TRW 000032 GPT Limited (reassigned from GEC Computers Ltd) 00005A S & Koch 00005E IANA 000065 Network General 00006B MIPS 000077 MIPS 00007A Ardent 000089 Cayman Systems Gatorbox 000093 Proteon 00009F Ameristar Technology 0000A2 Wellfleet 0000A3 Network Application Technology 0000A6 Network General (internal assignment, not for products) 0000A7 NCD X-terminals 0000A9 Network Systems 0000AA Xerox Xerox machines 0000B3 CIMLinc 0000B7 Dove Fastnet 0000BC Allen-Bradley 0000C0 Western Digital 0000C5 Farallon phone net card 0000C6 HP Intelligent Networks Operation (formerly Eon Systems) 0000C8 Altos 0000C9 Emulex **Terminal Servers** 0000D7 Dartmouth College (NED Router) 0000D8 3Com? Novell? PS/2 0000DD Gould 0000DE Unigraph 0000E2 Acer Counterpoint 0000EF Alantec 0000FD High Level Hardvare (Orion, UK) BBN internal usage (not registered) 000102 BBN

0020AF 3COM ??? 001700 Kabel 008064 Wyse Technology / Link Technologies 00802B IMAC ??? 00802D Xylogics, Inc. Annex terminal servers 00808C Frontier Software Development 0080C2 IEEE 802.1 Committee 0080D3 Shiva 00AA00 Intel 00DD00 Ungermann-Bass 00DD01 Ungermann-Bass 020701 Racal InterLan 020406 BBN BBN internal usage (not registered) 026086 Satelcom MegaPac (UK) IBM PC; Imagen; Valid; Cisco 02608C 3Com 02CF1F CMC Masscomp; Silicon Graphics; Prime EXL 080002 3Com (Formerly Bridge) 080003 ACC (Advanced Computer Communications) Symbolics LISP machines 080005 Symbolics 080008 BBN 080009 Hewlett-Packard 08000A Nestar Systems 08000B Unisys 080011 Tektronix, Inc. 080014 Excelan BBN Butterfly, Masscomp, Silicon Graphics 080017 NSC 08001A Data General 08001B Data General 08001E Apollo Sun machines 080020 Sun 080022 NBI 080025 CDC 080026 Norsk Data (Nord) 080027 PCS Computer Systems GmbH 080028 TI Explorer 08002B DEC 08002E Metaphor 08002F Prime Computer Prime 50-Series LHC300 080036 Intergraph CAE stations 080037 Fujitsu-Xerox 080038 Bull 080039 Spider Systems 080041 DCA Digital Comm. Assoc. 080045 ???? (maybe Xylogics, but they claim not to know this number) 080046 Sony 080047 Sequent

080049 Uni	vation
08004C End	core
08004E BIC	C
080056 Star	Iford University
080058 ???	DECsystem-20
08005A IBN	Л
080067 Cor	ndesign
080068 Rid	ge
080069 Sili	con Graphics
08006E Cor	ncurrent Masscomp
080075 DD	E (Danish Data Elektronik A/S)
08007C Vit	alink TransLAN III
080080 XIC	os
080086 Ima	gen/QMS
080087 Xyp	blex terminal servers
080089 Kin	etics AppleTalk-Ethernet interface
08008B Pyr	amid
08008D Xy	Vision XyVision machines
080090 Ret	x Inc Bridges
484453 HD	S ???
800010 AT	¢Т
AA0000 DB	C obsolete
AA0001 DB	C obsolete
AA0002 DB	C obsolete
AA0003 DE	C Global physical address for some DEC machines
AA0004 DB	C Local logical address for systems running DECNET

Data value (hexadecimal): 00:00:00:00:00:00

Data values in other bases: Not applicable

Start Bit: 144

ARP PDU>*Target Protocol Address*> for the selected ARP PDU

Field Name: Target Protocol Address

Description: The protocol of the sender computer. This is used to identify the targets Protocol.

Data value (decimal): 192.168.0.145

Hexadecimal	С	0	А	8	0	0	9	1
Binary	1100	0000	1010	1000	0000	0000	1001	0001

Start Bit: 196

2.2.18 IP PDU for the selected UPD PDU

IP PDU > *IP Version* for the selected UDP PDU

Field Name: IP Version

Description: Version is a 4-bit field that indicates the format of the Internet header.

Data value (decimal): 4

Data values in other bases:

Hexadecimal	4
Binary	0100

Start Bit: 0

IP PDU > *Header Length* for the selected **UDP PDU**

Field Name: Header Length

Description: The IHL field is a 4-bit field indicating the length of the internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Data value (decimal): 5.

Data values in other bases:

Hexadecimal	0	5
Binary	0000	0101

Start Bit: 4

IP PDU > *Type of Service* for the selected UDP PDU

Field Name: Type of Service

Description: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Bits 0-2: Precedence	
Bit 3: (D) $0 = Normal Delay$	1 = Low Delay
Bit 4: (T) $0 =$ Normal Throughput	1 = High Throughput
Bit 5: (R) $0 =$ Normal Reliability	1 = High Reliability

Precedence:

111 = Network Control110 = Internetwork Control101 = CRITIC/ECP100 = Flash Overrided

011 = Flash 010 = Immediate 001 = Priority 000 = Routine

Data value (decimal): 16

Data values in other bases:

Hexadecimal	1	0
Binary	0001	0000

Start Bit: 8

IP PDU > *Total Length* for the selected **UDP PDU**

Field Name: Total Length

Description: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including Internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Data values (decimal): 296

Data values in other bases:

Hexadecimal	0	1	2	8
Binary	0000	0001	0010	1000

Start Bit: 16

IP PDU > *Identification* for the selected **UDP PDU**

Field Name: Identification

Description: Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a data gram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the data gram or any fragment could be alive in the Internet.

Data value (decimal): 48087

Data values in other bases:

Hexadecimal	В	В	D	7
Binary	1011	1011	1101	0111

Start Bit: 32

IP PDU > *Flags* for the selected **UDP PDU**

Field Name: Flags

Description:Flags is a 3-bit field that indicates directions for fragmentation.Bit 0: reserved, must be 0Bit 1: (DF) 0 = May FragmentBit 2: (MF) 0 = Last Fragment1 = More Fragment

Data value (binary): 000

Data values in other bases: Not applicable

Start Bit: 48

IP PDU > *Fragment Offset* for the selected UDP PDU

Field Name: Fragment Offset

Description: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Data value (decimal): 0

Data values in other bases:

Hexadecimal	0	0
Binary	0000	0000

Start Bit: 51

IP PDU > *Time to Live* for the selected UDP PDU

Field Name: Time to Live

Description: Time to Live is an 8-bit field that indicates the maximum time the data gram is allowed to remain in the Internet. If this field contains the value 0, then the data gram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the data gram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum data gram lifetime.

Data value (decimal): 60

Data values in other bases:

Hexadecimal	3	С
Binary	0011	1100

- The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary sequence was 0010 0000

Start Bit: 64

IP PDU > *Protocol* for the selected UDP PDU

Field Name: Protocol

Description: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

Dec He	X	Protocol	Dec	Hex	Protocol
0	00	Reserved	22	16	Multiplexing
1	01	ICMP	23	17	DCN
2	02	Unassigned	24	18	TAC Monitoring
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network
5	05	ST	100	64	SATNET and
					Backroom EXPAK
6	06	ТСР	101	65	MIT Subnet
					Support
7	07	UCL	102-104	66-68	Unassigned
10	0A	Unassigned	105	69	SATNET
					Monitoring
11	0B	Secure	106	6A	Unassigned
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core
					Utility
13	0D	NVP	110-113	6E-71	Unassigned
14	0E	PUP	114	72	Backroom SATNET
					Monitoring
15	0F	Pluribus	115	73	Unassigned
16	10	Telnet	116	74	WIDEBAND
					Monitoring
17	11	XNET	117	75	WIDEBAND
					EXPAK
20	14	Chaos	120-376	78-0178	Unassigned
21	15	User Datagram	377	0179	Reserved

Data value (decimal): 17

Data values in other bases:

Hexadecimal	1	1
Binary	0001	0001

Start Bit: 72

Length: 8

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected **UDP PDU**

Field Name: Header Checksum

Description: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Data value (decimal): 16199

Data values in other bases:

Hexadecimal	3	F	4	7
Binary	0011	11111	0100	0111

Start Bit: 80

IP PDU > *Source IP Address* for the selected UDP PDU

Field Name: Source IP Address

Description: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet. The source address of the sender of the IP data gram: NET ID ADDRESS RANGE 000-127 Class A 10.0.0.0-10.225.225 128-191 Class B 172.16.0.0-172.31.255.255 192-223 Class C 192.168.0.0-192.168.255.255 224-239 Class D (multicast) 240-255 Class E (experimental) HOST ID 0 Network value; broadcast(old) 255 Broadcast

Data value (decimal): 192.168.0.71

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	4	7
Binary	1100	0000	1010	1000	0000	0000	0100	0111

Start Bit: 96
IP PDU > Destination IP Address for the selected UDP PDU

Field Name: Destination IP Address

Description: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet. The IP address of the host where this data gram is being sent: NET ID ADDRESS RANGE 000-127 Class A 10.0.0-10.225.225 128-191 Class B 172.16.0.0-172.31.255.255 192-223 Class C 192.168.0.0-192.168.255.255 224-239 Class D (multicast) 240-255 Class E (experimental) HOST ID 0 Network value; broadcast(old) 255 Broadcast

Data value (decimal): 192.168.0.255

Data values in other bases:

Hexadecimal	С	0	А	8	0	0	F	F
Binary	1100	0000	1010	1000	0000	0000	1111	1111

Start Bit: 128

Length: 32 bits

IP PDU > *Options* for the selected UDP PDU

Field Name: Options

Description: The options may or may not appear in Ethernet packets. They have to be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Data values: Not applicable

Data values in other bases: Not applicable

Start Bit: 160

Length: Variable (0-40 bits)

IP PDU > *Data* for the selected **UDP PDU**

Description: The Data is a variable length field, which contains the actual data that is being sent from one host to another. The data field may start with a Layer 4 header, which will give additional instructions to the application that will be receiving the data; alternately, it may be an ICMP header and not contain any user data at all.

Data values in other bases:

Not Applicable

Start Bit: 0

Length: 268

IP PDU > *Source Port Number* for the selected **UDP PDU**

Field Name: Source Port Number

Description: Source Port is an optional field, when meaningful, it indicates the port of the sending process, and may be assumed to be the port to which a reply should be addressed in the absence of any other information. If not used, a value of zero is inserted.

Data value (decimal): 525

Data values in other bases:

Hexadecimal	02	0D
Binary	0010	1101

Start Bit: 0

Length: 16 bits

RFC Link: http://www.ietf.org/rfc/rfc0768.txt?number=768

IP PDU > *Destination Port Number* for the selected UDP PDU

Field Name: Destination Port Number

Description: Destination Port has a meaning within the context of a particular Internet destination address.

Data value (decimal): 525

Data values in other bases:

Hexadecimal	02	0D
Binary	0010	1101

Start Bit: 16

Length: 16 bits

IP PDU > *Length* for the selected **UDP PDU**

Field Name: Length

Description: Length is the length in octets of this user data gram including this header and the data (This means the minimum value of the length is eight).

Data value (decimal): 276

Data values in other bases:

Hexadecimal	01	14
Binary	0000 0001	0001 0100

- The Binary sequence used here is that of Blue Technology's data. Blue's data matches up with the dump file from ethereal while Mirage's doesn't.
- Mirage's binary sequence was 0000 0001 0000 0100

Start Bit: 32

Length: 16 bits

IP PDU > *Checksum* for the selected UDP PDU

Field Name: Checksum

Description: Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two octets.

Data value (decimal): 59867

Data values in other bases:

Hexadecimal	Е	9	D	В
Binary	1110	1001	1101	1011

Start Bit: 48

Length: 16 bits

IP PDU > *Data* for the selected **UDP PDU**

Field Name: Data

Description: Source Port is an optional field, when meaningful, it indicates the port of the sending process, and may be assumed to be the port to which a reply should be addressed in the absence of any other information. If not used, a value of zero is inserted.

Data values in other bases: Not Applicable

Start Bit: 0

Length: 268 bits

Section 3 Data Storage

Section 3.1 Naming convention

The data session files will have a naming convention that will distinguish the type of the file and the chosen name to represent the file. The type of file will end in the *.dat format. The date does not have to be given in the file as Paradigm will be writing a script to find it using Perl as the scripting language. All files will be stored in the same directory named Files, as they will be sorted by type through the Packet Descriptor. An example of an ftp packet using the file name convention is ftp_file01.dat.

Section 3.2 Physical location of data

The files will be stored and maintained on Siena's Oraserv server in the "/home/csis4100405/EtherealSessions" directory. The files in this directory will have - rw-r--r-- permissions while the directory will have drwxrwxr-x permissions.

Section 4 Testing Requirements

During the unit and functional testing phase, Black Box testing will be used. With Black Box testing, possible inputs are inserted into the program, and a successful test includes observing expected outputs. For functionality testing, there will be no need to look at what is happening inside the program itself. For this testing phase, the testing subset of the team will test every facet of the program.

Section 4.1 Testing Specifications

- The web site will contain four screens:
 - 1. Protocol Selector Screen
 - 2. Packet Selector Screen
 - 3. Information Display Screen
 - 4. History Page

The list of "active" protocols (those that the user can select) are as follows:

- 1. SNMP
- 2. FTP
- 3. SMTP
- 4. HTTP
- 5. PING
- 6. TELNET
- 7. ARP
- 8. SSH

The list of "inactive" protocols (those that show up in the protocol hierarchy, but cannot be chosen for viewing) are as follows:

- 1. SCP
- 2. DHCP
- 3. DNS
- 4. RSVP
- 5. LDAP
- 6. NTP

The protocol hierarchy display will be available at any time while the web site is being accessed. When the hierarchy is accessed, a picture will appear with the hierarchy and active links. Once a selection is made, a drop down menu will appear to allow the user to select an Ethereal data session.

- When the user first accesses the TCP/IP Descriptor, this is the first screen he or she will see.
- Within the protocol hierarchy display, a picture of the TCP/IP and Open Systems Interconnection (OSI) layers will be displayed alongside the protocol hierarchy, with an emphasis on which protocols reside within each layer.
- There will be a button that will link the user to the History Page. This page will display all groups that have worked on the project, both past and present.
- Selecting a protocol will cause a drop down menu containing all ethereal data sessions in the /home/csis4100405/EtherealSessions folder of Oraserv.
- Selecting one of those data sessions will move the user to the Packet Selector screen.

• Selecting a protocol will cause a picture of that protocol, and any lower level protocols, to be displayed in the Protocol Display Zone of the TCP/IP Packet Descriptor.

The Packet Selector of the TCP/IP Packet Descriptor will display the selected data session's packets. Only the packets of the selected protocol will be displayed for the user to select.

- If there are more packets than our displaying window will allow the user will be able to scroll down and highlight a different packet.
- There will be a button that will link the user to the History Page. This page will display all groups that have worked on the project, both past and present.
- The user is able to return to the Protocol Selector Screen by clicking on the "Choose Protocol" button.
- To select a highlighted packet, the user will be able to either double-click the packet, or click the "View Packet" button.
- Selecting a packet will bring the user to the Information Display window where a picture of that protocol, and any lower level protocols, will be displayed.

The Information Display Screen of the TCP/IP Packet Descriptor will display the selected packet in the selected protocol, with a breakdown of the protocol's appropriate fields, in a colorful and informative matter.

- The user is able to return to the Protocol Selector Screen by clicking on the "Choose Protocol" button.
- The user is able to return to the Packet Selector Screen by clicking on the "Choose Packet" button.
- There will be a button that will link the user to the History Page. This page will display all groups that have worked on the project, both past and present.
- Each PDU picture will be broken up into its component fields. Bit and octet positions will be shown.
- Each picture of each protocol will show the Request for Comments (RFC) number. The number will be a link to a homepage containing comprehensive information about that protocol.
- There will be a protocol stack displayed in the upper right section of the Information Display Screen, allowing the user to be able to switch between the selected protocol and any of the lower level protocols.
- In each picture, field names and protocol data will be displayed.
- Selecting a field in one of the displayed units will cause information about that field to be displayed in the Information Box on the left side of the screen.

The Information Box, which is part of the Information Display Screen, will display field specific information for the various PDUs.

- When a field is selected, that field will be highlighted, and a picture of that field, with the contained data and bit positions, will be displayed.
- Along with the picture, information about the selected field will also be displayed.
- The information will be displayed in all appropriate radices.

The History Page will contain information about groups, both past and present, that have worked on the TCP/IP Descriptor.

- This page will contain links to every group's home page as well as to the Software Engineering website, and back to the TCP/IP Packed Descriptor.
- This page will also contain a description of the project as given to us by Mr. Ken Swarner.

Other Requirements:

• The Descriptor Home Page will be viewable in Microsoft Internet Explorer and Netscape Navigator in full screen mode at 1024 x 768 screen resolution.

Section 4.2 Testing Forms

Unit Testing Form

What being tested	Tested for	Expected	Pass	Comments
		Outcome	or	
			Fail	
Protocol Selector	Does it load?	The PrSS page		
Screen (PrSS)		loads when		
		access is		
		attempted		
PrSS	Is the protocol	The connecting		
	tree displayed	lines on the		
	correctly?	protocol tree		
		connected are		
		correctly and		
		contains both		
		active and		
		inactive protocols		
PrSS	Is the TCP/IP	The TCP/IP		
	Model present?	Model appears to		
	_	the right of the		
		protocol tree		
PrSS	Is the OSI Model	The OSI Model		
	present?	appears to the		
		right of the		
		TCP/IP Model		
PrSS	Is the History	The History		
	Button present?	Button is on the		
	-	page on the lower		
		right hand corner		
PrSS Active	Does drop down	When the user		
Protocols [*]	appear when	clicks an active		
	clicked?	protocol the drop		
		down menu		
		containing a list		
		of Ethereal data		
		sessions is		
		displayed		
PrSS Drop Down	Does drop down	The names of the		
Menu*	contain all the	Ethereal data		
	correct files	sessions are		
	named correctly?	correct		
PrSS Active Protocol	Correct box	The color of the		
Buttons [*]	color?	active protocol		

		boxes are	
		consistent and	
		different from the	
		inactive protocol	
		boxes	
PrSS Active Protocol	Correct font	The color of the	
Buttons*	color?	active protocol	
Duttons	0101.	font is readable	
		consistent and	
		different from	
		that of the	
		that of the	
		inactive protocol	
		font	
PrSS Inactive	Correct box	The color of the	
Protocols	color?	inactive protocol	
		boxes are	
		consistent and	
		different from the	
		active protocol	
		boxes	
PrSS Inactive	Correct font	The color of the	
Protocols*	color?	inactive protocol	
		font is readable.	
		consistent, and	
		different from	
		that of the active	
		protocol font	
PrSS Information Box	Is it present?	The Information	
	is it present.	Box appears	
		below the	
		protocol screen	
		when the PrSS	
		loads	
PrSS Information	Does it display	When a protocol	
	the correct	is selected	
DUA	information when	information	
	vou soloct o	about that	
	you select a	avout uiat	
	protocor?	protocol appears	
		in the	
D CC		Information box	
PrSS	Is the RFC link	The RFC link is	
	present?	present in the	
		Ethernet Frame	
		at the top of the	
		screen	
PrSS	Does the RFC	The RFC link	

	link hain a way to	hain on the mean to	
	This bring you to	unings the user to	
	the correct site?	the appropriate	
		RFC page	
PrSS	Does the link to	Upon clicking	
	the History page	the history page	
	work?	button we are	
		brought to the	
		History Page	
PrSS	Does the link to	The History Page	
	the History Page	button appears on	
	annear?	the bottom right	
	appears	of the screen	
Dealect Salactor Scroon	Door it load?	The DeSS nego	
(D ₂ SS)	Does it load?	The Fass page	
(Pa55)		loads once a	
		protocol and data	
		session are	
		selected	
PaSS	Is the data session	The packets for	
	parsed correctly?	the data session	
		are displayed	
		properly	
PaSS	Is the default	The first packet	
	packet	in the list of	
	highlighted upon	packets is	
	load?	highlighted upon	
	1000	nage load	
PaSS	Is the box	If more than a	
1 455	sorollable if there	n more than a	
	is more then a	in the colocted	
	is more than a	In the selected	
	page worth of	session, a scroll	
	packets in the	bar allows the	
	data session?	user to go	
		through the entire	
		list	
PaSS [*]	Is the title correct	The title of the	
	for the selected	selected protocol	
	protocol?	appears above	
		the packet	
		selection box in	
		the center of the	
		page	
PaSS	Are we allowed to	The user can	
	highlight different	change the	
	nackets?	highlighted	
	packets:	nacket from the	
		defeult to st	
	1	default to others	

PaSS	Does the link to the History page	Upon clicking the history page		
	work?	button we are		
		brought to the		
		History Page		
PaSS	Does the link to	The History Page		
	the History Page	button appears on		
	appear?	the bottom right		
		of the screen		
Information Display	Does it load?	The IDS page		
Screen (IDS)		loads once a		
		packet is selected		
IDS^*	Do the correct	All the fields for		
	number of fields	the selected		
	show up in their	protocol show up		
	correct positions	and are the		
	and lengths?	proper length and		
		in their correct		
		positions		
IDS^*	Does the top bar	Upon page load		
	load correctly?	does the Ethernet		
		Bar load with the		
		proper		
*		information		
IDS [*]	Does the link to	Upon clicking		
	the History Page	the history page		
	appear?	button we are		
		brought to the		
*		History Page		
IDS [*]	Does the link to	The History Page		
	the History page	button appears on		
	work?	the bottom right		
*		of the screen		
IDS	Does the protocol	The selected		
	stack for the	protocol and its		
	selected protocol	lower level		
	and its lower level	protocols are		
	protocols display	displayed in a		
	properly?	stack to the right		
		of the Ethernet		
		Bar		
IDS	Is the data in each	The data in each		
	tield displayed	field is correct		
	correctly?	and displayed in		
		a coherent		
		manner		

IDS [*]	Upon clicking a	When a field is	
	field, is the	selected,	
	information about	information	
	that field	about it appears	
	displayed in the	in the	
	Information Box?	Information Box	
IDS*	Does the	The background	
	background color	of the	
	of the Information	Information Box	
	Box match the	matched that of	
	color of the	the field it is	
	selected field?	displaying	
		information	
		about	
IDS*	Does the RFC	The RFC link	
~	link point to the	brings the user to	
	correct location?	more information	
		about the	
		protocol	
IDS*	Can we navigate	Clicking the	
12.5	between the	protocol stack	
	protocols using	allows the user to	
	the protocol	change view the	
	stack?	lower level	
	Statin.	protocols or	
		return to the	
		starting protocol	
History Page	Does everything	The project	
	appear correctly?	description title	
	"ppour concerning.	and links all	
		appear in a neat	
		and coherent	
		manner	
History Page	Do the links	All the links	
	work?	bring the user to	
		the location that	
		that say they do	
1			

* Note: For the steps that require testing more than one object, separate subtest forms will be created. These sub-test forms will be modeled to encompass each of the separate protocol's unique attributes.

Functional Testing Form

What being tested	Tested for	Expected	Pass	Comments
		Outcome	or	
			Fail	
PrSS	Upon click of a data	When a data		
	session from drop	session from the		
	down menu does it	drop down		
	go to the PaSS?	menu is clicked,		
		it brings the		
		user to the PaSS		
PaSS	Is the correct	The title of the		
	protocol from the	selected		
	PrSS displayed at the	protocol appears		
	top of the screen?	above the		
		packet selection		
		box in the		
		center of the		
		page		
PaSS	Are the packets	The packets		
	displayed the correct	displayed in the		
	ones for the data	PaSS are for the		
	session chosen in	selected data		
	PrSS?	session and		
2.22		protocol		
PaSS	Does Choose	Pressing the		
	Protocol button take	Choose Protocol		
	us to PrSS?	button brings		
		the user back to		
D GG		the PrSS		
PaSS	Does double clicking	Double clicking		
	a packet take us to	a packet brings		
	IDS?	the user to the		
D CC				
Pass	Does the View	Highlighting a		
	Packet button take us	packet and		
	to IDS?	pressing the		
		View Packet		
		button brings		
		the user to the		
IDS	In the correct realt	The meeterst		
102	is the correct packet	The packet		
1	uisplayed as given to	whose	1	1

	us by the PaSS? (by	information is	
	double clicking or	displayed on the	
	View Packet button)	IDS is the	
		packet that the	
		user selected	
IDS	Does Choose	Pressing the	
	Protocol button take	Choose Protocol	
	us to PrSS?	button brings	
		the user back to	
		the PrSS	
IDS	Does Choose Packet	Pressing the	
	button take us to	Choose Packer	
	PaSS? (check to	button brings	
	make sure still in	the user back to	
	same data session)	the PaSS for the	
		selected data	
		session and	
		protocol	
History Page	Does clicking the	Upon clicking	
Button [*]	History Page button	the History Page	
Dutton	take us there?	button the user	
	tune us more.	is brought to the	
		History Page	
History Page	Does the Back link	The Back link	
instory ruge	on the History Page	hrings the user	
	bring us back to	back to the	
	where we left off?	point from	
	where we left off.	which the	
		History Button	
		was selected	
History Page	Does the Blue	Clicking the	
Thistory Tage	Technologies link on	Blue	
	the History Page	Technologies	
	bring us to their	link brings us to	
	website?	their website	
Llistowy Dogo	Deag the Mirage Inc	Clipting the	
Filstory Page	link on the History	Miraga Ing link	
	Daga bring us to their	brings us to	
	Page bring us to their	drings us to	
II: -t D	De se the Deve die ve	Cliptoine the	
nistory Page	Does the Paradigm	Clicking the	
	Solutions link on the	Paradigm	
	History Page bring	Solutions link	
	us to their website?	brings us to	
		their website	
History Page	Does the Software	Clicking the	
	Engineering link on	Software	

the History Page	Engineering	
bring us to the	link brings us to	
Software	the Software	
Engineering	Engineering	
webpage?	webpage	

* Note: For the steps that require testing more than one object, separate subtest forms will be created. These sub-test forms will be modeled to encompass each of the separate protocol's unique attributes.

5.0 Appendix

5.1 Glossary

Gantt Chart - A chart that depicts progress in relation to time, often used in planning and tracking a project.

GUI - (Graphical user interface) An interface, which uses text boxes and buttons to allow easy access of information by use of a mouse or other pointing device.

HTML – (Hypertext markup language) A markup language used to structure text and multimedia documents and to set up hypertext links between documents, used extensively on the World Wide Web.

Internet - An interconnected system of networks that connects computers around the world via the TCP/IP protocol.

Linear Sequential Model / **Classic Waterfall Model** – A systematic, sequential approach to software development that begins at the system level and progresses through analysis, design, coding, testing, and support.

Macromedia Dreamweaver MX 2004 - Website development environment. (http://www.macromedia.com)

Open Systems Interconnection Reference Model - A model of network architecture and a suite of protocols (a protocol stack) to implement it, developed by the International Organization for Standardization (ISO) in 1978 as a framework for international standards in heterogeneous computer network architecture.

PDU- (Protocol Data Unit) Information that is delivered as a unit among peer entities of a network that may contain control information, address information, and/or data.

PHP – (PHP: Hypertext Preprocessor) A server-side embedded scripting language. The PHP commands, which are embedded in the web page's HTML, are executed on the web server to generate dynamic HTML pages.

RFC- (Request for Comments) number. A formal document from the Internet Engineering Task Force (IETF) that is the result of committee drafting and subsequent review by interested parties.

Software - Written programs or procedures or rules and associated documentation pertaining to the operation of a computer system and that are stored in read/write memory.

TCP/IP – (Transmission Control Protocol / Internet Protocol) The suite of communications protocols used to connect hosts on the Internet. TCP/IP uses several protocols, the two main ones being TCP and IP. TCP/IP is built into the UNIX operating system and is used by the Internet, making it the primary standard for transmitting data over networks.

5.2 Gantt Chart

