
Acceptance Test
Subconscious Analysis Software (SAS)

Appendix A: Test Plan

Requested by:

 Dr. Eric Breimer

Associate Professor

Department of Computer Science

Siena College

Delivered by:

enigma elucidation

Prepared By:
Megan DeRudder
Christopher Black

Lindsay Kulzer
Amanda Kurz
Nathan Levine
Daniel West

April 26, 2012

Version 1.0

Table	
 of	
 Contents	

Introduction and Identifier	
 ...	
 3	

1.1 Introduction	
 ...	
 3	

1.2 Test Plan Identifier	
 ...	
 4	

2.1 Functional Requirements Inventory	
 ..	
 4	

2.1.1 Administrator	
 ...	
 4	

2.1.2 Participant	
 ...	
 5	

2.2 Non-Functional Requirements Inventory	
 	
 5	

2.3 Exception Handling	
 ...	
 6	

2.4 Acceptance Test- Acceptance Criteria	
 ...	
 7	

2.5 Unit Test Directory	
 ...	
 8	

2.5.1 Unit Test Cases	
 ..	
 8	

2.5.3 Login	
 ...	
 9	

2.5.4 Querying the Database	
 ..	
 10	

2.5.5 Create IAT	
 ...	
 11	

2.5.7 Upload Stimuli	
 ...	
 13	

	

Introduction and Identifier

 1.1 Introduction

In order for enigma elucidation to test the functional and non-functional
requirements of our system, SAS, we have divided our system into logical
units which represent each of the major functions that are required for SAS.
 The functional requirements these units test can be found in section 2.2 of
the Acceptance Test document. Each unit is further divided into test cases.
 These are individual actions that when used together complete a unit. We
will first test all of the test cases separately to make sure they have been
implemented correctly and functioning as expected. After testing each case
we will be able to test them as a unit, called unit tests. We will test the unit
cases that other unit cases depend on first. This way, if an error is discovered
in these first to be tested cases, we won’t have to restart testing from the
beginning upon fixing the error. In the event that we are testing one unit that
is both depended on and depends on other units, we will retest the associated
units after any errors are found and corrected in that particular unit. This
process is known as integration testing. This process of performing tests that
take into account how the performance is of units change due to changes in
dependencies is called integration testing. Finally we will test will test our
system as a whole to ensure that all functional requirements have been met.

If there are major changes to the implementation of any function during
the testing process a regression test will be performed to ensure that all of the
pieces of SAS are still functioning correctly. This regression test will consist
of an integration test performed on the unit that was changed.

Once all of the functional requirements are met, we will test the non-
functional requirements to the best of our ability. We will perform the
“Stupid Roommate Test” by showing our product to our peers, and making
sure that they find SAS aesthetically pleasing, can figure out how it works,
and cannot break the code. We will also test the product on multiple
platforms to make sure there are no compatibility issues. SAS is being
developed run independent of any localized server. To test this, we will run
our program from multiple servers.

Finally, after all testing is performed and it is confirmed that SAS is
functioning as expected and to the standards of enigma elucidation we will
present our system to our client, Dr. Eric Breimer, who will perform the final
test, the acceptance test. The acceptance test will involve both the functional
and non-functional requirements. Dr. Breimer will either accept or reject our
implementation based on whether or not his functional or nonfunctional
requirements are met.

1.2 Test Plan Identifier

The test plan will consist of a detailed checklist of how the software
should perform. The details of the test plan will adjust as the functional and
non-functional requirements change throughout software development. The
document will record all unit test and their results, pass or fail. The final
version of our test plan will be provided with our Acceptance Test
Documentation.

Item Pass/Fail Criteria

 2.1 Functional Requirements Inventory

The functional requirements inventory is the part of the test plan that checks
if the functional requirements of SAS are met. The functional requirements are
components that can be tested and then classified as either met or unmet based on
the data the unit tests provide. The functional requirements inventory will act as a
checklist to ensure that the requirements of our client, Dr. Breimer, are met. Below
is a checklist based on the functional requirements for the two users of SAS, the
administrator and the participant.

2.1.1 Administrator

YES NO Will be able to securely log into SAS via FILET

YES NO Will be able to create IAT

YES NO Will be able to enter four unique categories

YES NO Will be able to choose stimuli objects, words or images,
associated with each category

YES NO Will be able to delete stimuli objects before completing IAT

YES NO Will be able to create demographic survey

YES NO Will be able to log out of SAS

2.1.2 Participant

YES NO Will be able to take an IAT

YES NO Will be able to fill out a demographic survey

YES NO Will be able to view directions on how to take an IAT

YES NO
Will be able to view all of the categories and the stimuli
objects correlated with them

YES NO
Will be able to take the test by categorizing stimuli for 6
different blocks

YES NO
Will be able to categorize stimuli by pressing the I or E keys
on their keyboard

YES NO Will be able to press the spacebar to move onto the next block

2.2 Non-Functional Requirements Inventory

The following is a list of non-functional requirements of SAS. Below are
requirements that specify how the system should be; that is, what qualities the

system should have as opposed to what the system should do (functional
requirements).

· The system must be aesthetically pleasing
· The system must be easy to use
· The system must be independent of any localized server
· The system must be platform independent

2.3 Exception Handling

The system must be able to handle errors caused by the environmental
factors and actions made outside of the system or system’s control. SAS will
be built to handle these exceptions.
If our administrator, Dr. Breimer forgets his password, there must be a
method to access his account. SAS will provide a “Forgot Password,” link on
the login screen. This link will send the administrator to a second screen
which will ask Dr Breimer to provide his email address. If this email address
matches up with the one preregistered within the system, the system will send
an email to Dr Breimer’s registered email account providing his password
and a link back to the login screen of SAS.
While Dr. Breimer creates an IAT he must fill out forms for both, creating
categories for the IAT and inputting stimuli to the IAT. An IAT cannot be
created without inputting four unique categories. JavaScript will first be used
to first check that there is data in each category field; the "Submit" button
will not be active until this requirement is fulfilled. Second, each category
must be unique. We will not accept the category fields unless all four are
unique.

The second portion of the create IAT form is used to upload stimuli.
The upload stimuli form will contain radio buttons to choose between, image
or word. To upload a word, the user must input a word in the stimuli text
field. JavaScript will be used to check if this field is left blank. If the text
field is blank, the upload button will not be active. To upload an image, the
user must select the radio button for image. JavaScript will be used to check
which radio button is selected; the “Browse for Images” button will not be
active if the image radio button is not selected. Our system will only allow
certain file extensions and file size to be uploaded as stimuli objects. Another

measure of handling will take place during image upload to check the
selected file is valid.

SAS must also be able to handle system crashes, due to loss of internet
or power during the creation or execution of an IAT. To ensure SAS does not
leave the database with incomplete rows, all data collected during IAT
creation or execution will only be stored in the database at the conclusion of
creation or execution. This information will be available for FSH
Technologies to check before analyzing, exporting, or removing any IAT
data for Dr. Breimer’s research.

2.4 Acceptance Test- Acceptance Criteria

A software test plan is essential to the design and development of a
desired product. The test plan forces the developers to access all functions of
the product taking into account how they are to perform with both expected
and unexpected input. Doing this helps to better the performance of the
product later when development is complete and ready for use by its intended
user(s). It addresses any problems that may have not been obvious during the
planning or design phases.

The test plan documents how each of the functional and non-functional
requirements are to perform based on their objectives, scope, approach,
and/or input. It also contains details for testing each of these functions and
how the product should handle any input or condition, desired or undesired.
The test plan should be explicit enough so that any user would be able to test
the product and determine whether it meets the acceptance criteria or not.

The acceptance criteria are based on the functional and non-functional
requirements of the product, which are listed in sections 2.1 and 2.2 of this
document, respectively. The functional requirements describe what the
system or product should be able to do and how, while the non-functional
requirements describe how the system should be, for example user-friendly or
aesthetically pleasing. Non-functional requirements cannot be tested and the
acceptances of these requirements ultimately lie in the opinions of our client.

Upon completion of these tests, enigma elucidation will not only be
able to determine if the system was implemented correctly but also have a
better understanding of how the system is organized and what should be
changed to make it more cohesive, if anything.

Our system, SAS, Subconscious Analytical Software, will be tested on
both Windows and Mac operating systems and on major browsers, such as
Internet Explorer, Google Chrome, Mozilla Firefox, and Safari. Testing
conditions will be determined by enigma elucidation and will be organized in
a hierarchy that will break down into more detail at each level.

The roots of the test plan are the unit tests. The unit tests will divide
each of the functional requirements into categories, or units, which will
contain more specific tests for each test case. Each of the cases will be tested
separately at first then as a unit. Once all units are functioning as expected
they will be tested together to ensure that they continue to perform correctly,
this is called the integration test. The outcome of all these tests will be
compiled into the Acceptance Test document. This will determine whether
or not all of the requirements have been met.

2.5 Unit Test Directory

 The following is a list of all units which will be tested. Once every
individual unit test passes, a full systems test will be performed to check the
overall correctness of the system.
 List of Units
 Login
 Querying the Database
 Create IAT
 Take IAT
 Add Stimuli

2.5.1 Unit Test Cases

 Each individual test case consists of an identifying test number and a
description. Also included is the input to be entered by the user, the state
before the test, and the expected result. After each test has been performed,
they will be marked with pass/fail, and observations made of the test results

will be recorded.

2.5.2 Directory of Unit Test

2.5.3 Login

2.5.4 Querying the Database

2.5.5 Create IAT

2.5.6 Take IAT

2.5.7 Upload Stimuli

	

