Preliminary Design

Requested by:

Mr. Ken Swarner Systems Administrator Computer Science Department of Siena College

TCP/IP Packet Descriptor

EdgeTech Development

"We're always on the cutting edge" edgetechdevelopment@hotmail.com

Prepared by:

Matt DeCrescente, Team Leader Eric Fish Jill Foster John Mooney Das Nobel

December 5, 2003

Preliminary Design

Preliminary Design Table of Contents

1.0 External Design Specifications	4
1.1 User Displays	4-6
1.2 User Command Summary	7
1.3 Detailed Data Flow Diagrams	8-10
1.4 Hardware, Software, and Human Interfaces	11
2.0 Architectural Design Specification	12
2.1 User Commands - FTP (AKA "Clickable Buttons")	12
2.1.1 IP PDU for the selected FTP PDU	13-26
2.1.2 TCP PDU for the selected FTP PDU	27-38
2.1.3 FTP PDU for the selected FTP PDU	39-46
2.2 User Commands - ICMP (AKA "Clickable Buttons")	47
2.2.1 IP PDU for the selected ICMP PDU	48-61
2.2.2 ICMP PDU for the selected ICMP PDU	62-68
2.3 User Commands - TELNET (AKA "Clickable Buttons")	69
2.3.1 IP PDU for the selected TELNET PDU	70-83
2.3.2 TELNET PDU for the selected TELNET PDU	84-95
2.4 User Commands - ARP (AKA "Clickable Buttons")	96
2.4.1 ARP PDU for the selected ARP PDU	97-107
2.5 User Commands – SSH (AKA "Clickable Buttons")	108
2.5.1 IP PDU for the selected SSH PDU	109-119
2.5.2 TCP PDU for the selected SSH PDU	120-129
2.5.3 SSH PDU for the selected SSH PDU	130-131
2.6 User Commands – UDP (AKA "Clickable Buttons")	132
2.6.1 IP PDU for the selected UDP PDU	133-152
2.6.2 UDP PDU for the selected UDP PDU	153-157
2.7 User Commands – PING (AKA "Clickable Buttons")	158
2.7.1 IP PDU for the selected PING PDU	159-166
2.7.2 PING PDU for the selected PING PDU	167-174
2.8 User Commands – HTTP (AKA "Clickable Buttons")	175
2.8.1 IP PDU for the selected HTTP PDU	176-189
2.8.2 TCP PDU for the selected HTTP PDU	190-199
2.8.3 HTTP PDU for the selected HTTP PDU	200-217
2.9 User Commands – SMTP (AKA "Clickable Buttons")	218
	110

2.9.1 IP PDU for the selected SMTP PDU	219-232
2.9.2 TCP PDU for the selected SMTP PDU	233-243
2.9.3 SMTP PDU for the selected SMTP PDU	245-246
2.10 User Commands – SNMP (AKA "Clickable Buttons")	247
2.10.1 IP PDU for the selected SNMP PDU	248-259
2.10.2 UDP PDU for the selected SNMP PDU	260-264
2.10.3 SNMP PDU for the selected SNMP PDU	265-272
3.0 GUI Testing Checklist	273
3.1 - Windows Compliance Testing	273
3.1.1 For Each Application	273
3.1.2 For Each Window in the Application	273
3.1.3 Command Buttons	273
3.2 - Tester's Screen Validation Checklist	273
3.2.1 Aesthetic Conditions	273
3.2.2 Validation Conditions	274
3.2.3 Navigation Conditions	274
3.2.4 Data Integrity Conditions	275
3.2.5 Modes (Editable Non-Implemented) Conditions	275
3.2.6 General Conditions	275
3.3 Specific Field Tests	276
3.3.1 Numeric Fields	276
3.3.2 Alpha Field Checks	276
4.0 Appendix	277
4.1 Glossary	277-279
4.2 Gantt Charts	280-281

1.0 External Design Specifications

1.1 User displays

This is the first screen the user will see. It allows the user to choose a protocol that they would like to explore further. This will lead them to two other screens that will allow the user to select a packet for viewing purposes and to see what an Ethernet Packet looks like. Additionally, each frame within that packet will have the option to display information about that chosen frame.

The "*Protocol Selector Screen*" gives the user a graphical representation of how protocols are interrelated, and allows the desired protocol to be selected.

Our team has enhanced this screen to include a Type/Length segment in the Ethernet Packet area and a button to view the history of the project to give acknowledgements to the two teams prior to our involvement on the project. We have also included more protocols to illustrate that there are many other protocols within TCP/IP, even if we are not implementing them.

Ethernet Packet						
Choose Protocol	Preamble	Destination MAC Addres	s Source MAC Addres	s Type/Length	CRC DOA di	TCP IP Ethernet
FTP Select A Packet	From The	No Time Source	Destination 68.0.39 192.168.0.101	Protocol Infe	。 816 > ftp [SYN]	Seq=0 Ack=0 win=!
Right Or Ope Captured Sessi	n A New on Below	2 0.000154 192.10 3 0.000401 192.10 4 0.013027 192.10 5 0.013375 192.10	68.0.101 192.168.0.39 68.0.39 192.168.0.101 68.0.101 192.168.0.39 68.0.39 192.168.0.39 68.0.39 192.168.0.39	TCP ft TCP 32 FTP Re TCP 32	p > 32816 [SYN, 816 > ftp [ACK] sponse: 220 cb1 816 > ftp [ACK]	ACK] Seq=0 Ack=1 Seq=1 Ack=1 Win=! 18ks.cs.siena.edu Seg=1 Ack=95 Win
Directory: /usr/local/etherdump	s_edge	6 6.676401 192.10 7 6.676429 192.10 8 6.677232 192.10	68.0.39 192.168.0.101 68.0.101 192.168.0.39 68.0.101 192.168.0.39	FTP Re TCP ft FTP Re	quest: USER fak p > 32816 [ACK] sponse: 331 Pas	euser Seq=95 Ack=16 wir sword required for
Name FTP_JPEG FTP_Bitmap FTP_InstallFile FTP_Document	Date 10/10/2004 09/10/2004 11/01/2004 11/01/2003	9 6.677417 192.11 10 13.318392 192.11 11 13.827680 192.14 12 13.827805 192.14 13 13.828869 192.14 14 13.828878 192.14 15 13.868033 192.14 15 13.868033 192.14 17 15.964227 192.14 18 15.964440 192.14 17 15.964227 192.14 10 21.046043 192.14 20 21.046043 192.14 22 21.046043 192.14 23 21.060328 192.14 24 21.099489 192.14 25 21.099568 192.14 26 21.099738 192.14 27 23.631322 192.14 28 23.631433 192.14 29 23.631769 192.14 29 23.632769 192.14 30 23.632769 192.14 31 23.63298 192.14 32 23.632981 192.14 33 23.632348 192.14 33 23.632348 192.14 34 23.63248 192.14 35 23.632348 192.14 35 25 25 25 25 25 25 25 25 25 25 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	TCP 32 FTP Re FTP Re TCP 32 TCP 32 TCP 32	816 > ftp [AcK] quest: PASSiTid sponse: 230 Use 816 > ftp [AcK] quest: SYST 816 > ftp [AcK] quest: SYST 816 > ftp [AcK] quest: TYPE I sponse: 200 Typ 816 > ftp [AcK] quest: PASV quest: STOR tes sponse: 227 Ent. 816 > ftp [AcK] quest: QUIT sponse: 221-YOU 816 > ftp [AcK] sponse: 221-YOU 816 > ftp [ACK]	Seq-16 Ack=132 W 20200500 r fakeuser logged Seq=33 Ack=162 W X Type: L8 Seq=39 Ack=181 W e set to I. Seq=47 Ack=201 W ering Passive Mode Seq=53 Ack=249 W tfile.dat ning BINARY mode (Seq=72 Ack=308 W nsfer complete. Seq=72 Ack=322 W have transferred Seq=78 Ack=379 W al traffic for th Seq=78 Ack=325 W ACK] Seq=525 Ack ACK] Seq=78 Ack=*

This is the second screen; this is where a user will be brought when the user selects the protocol they wanted to view. This screen is new to this program. Our team has included this new functional screen to allow a user to select a specific packet for viewing. The user can view the packet by double-clicking on the preferred packet.

The user can also choose a captured session from the directory. The directory has sorting capabilities based on name and date of the files. We have included a button for the user to get back to the *Protocol Selector Screen* by clicking on "*Choose a Protocol*". This screen also includes buttons to view the history of the project.

Ethernet Packet				
Choose Session/Packet	on MAC Address Source MAC Address	Type/Length IP PDU		
IP Frame	RFC - 0791			
0 1 2 3 4 5 6 7 2 9 10 11 12 13 14 19	5 16 17 18 19 26 21 22 23 24 25 26 27 28 29 :	Ethernnet > IP PDU > Total Length > FTP PDU		
IP Version Hdr Len Type of Service	Total Length	Field Name: Total Length of Ethernet Frame		
	1 1 0 0 1 0 0 1 0 0 1 0 1 1 2 3	0 1 Purpose and Definition: Total Length is a 16-bit field that indicates the length of the		
Identification	R D M Fragment Offset	frame, measured in octets, including internet header and data. The maximum size is 216-1		
1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 4 5		1 1 of 65,555 octets, however, the recommended maximum size is 576 octets.		
Time-to-Live Protocol	Header Checksum	Field Key: Not applicable		
1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 8 9		1 1 Data value: 69		
Source IF	Address	Data values in other bases (hexadecimal):		
		Hevadecimal 0 0 6 9		
Destination	IP Address	Binary 0000 0000 0110 1001		
		ASCII © i		
Opt	ions			
20 21	22 23			
24 25	26 27			

Once a packet has been selected by the user, this screen will display. The basis for our protocol suite, the FTP PDU is displayed on the left, filled in with the given data for the selected protocol. The user is able to click on any field in the FTP PDU, and an information box will display on the right, describing that field. In the FTP PDU Data field, "TCP PDU" is written – this indicates that the entire TCP PDU is contained within the TCP Data field. If the user clicks on this field, the TCP PDU will be displayed.

The PDUs are shown in a hierarchical design on the top right corner of this screen: this allows the user to navigate between them. The user may also click on any PDU in this map to navigate. If at any point, the user wants to choose a different protocol or packet to view, he or she may click on the "*Choose a Protocol*" or the "*Choose a Packet*/Session" button in the top left corner.

1.2 User Command Summary

Choose Protocol

This is the *Protocol Selector Screen* that gives the user the option to choose preferred protocol. This function will display a hierarchical tree of available protocols. Those nodes which are active will be a link to redirect the user to then select a captured session/packet.

Choose Packet

This is the *Packet Selector Screen* that gives the user the option to choose preferred captured session or packet. This function will display a directory of files captured and a packet listing within a captured session.

Protocols

Active:

TCP/IP Terminal Emulation Protocol (TELNET), Simple Network Management Protocol (SNMP), File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP), Hyper Text Transfer Protocol (HTTP), Address Resolution Protocol (ARP), Internet Control Message Protocol (ICMP), Packet Internet Groper (PING), Secure Shell (SSH).

Inactive:

Serial Line Internet Protocol (SLIP), Reverse Address Resolution Protocol (RARP), Routing Information Protocol (RIP), Bootstrap Protocol (BootP), Resource Reservation Protocol (RSVP), Internet Group Management Protocol (IGMP), Personal Information Manager (PIM), Dynamic Host Configuration Protocol (DHCP), Network Time Protocol (NTP), MobileIP, Multi-Purpose Internet Mail Extension (MIME), Lightweight Directory Access Protocol (LDAP), Post Office Protocol – Version 3 (POP3), Domain Name System (DNS), Internet Message Access Protocol – Version 4 (IMAP4), X-window, Secure Copy (SCP).

PDU Hierarchy Tree

Allows the user to see their progression through the many packets, and also able to choose their desired packet.

Information Box

Allows the user to see the given information for a selected field.

Protocol Fields

Each field will be a link. When selected, it will be highlighted and the Information of that field will be shown to the right of the field display.

Request for Comments Link

Each PDU will have a link to a web site with extensive information about the selected protocol.

1.3 Detailed Data Flow Diagrams

Level 0 Diagram:

Context Diagram:

Detailed Diagram:

1.4 Hardware, Software and Human Interfaces

The prototype was developed and designed on Macromedia Fireworks, a graphic design program.

The program will be written in HTML using Macromedia MX and PHP (PHP Hypertext Processor) Version 4.1.2.

The TCP/IP Packet Descriptor program will be hosted as a web site on the Siena College Computer Science Department's Oraserv Linux server (Red Hat version 7.1), running the Apache web server (version 1.3.19).

Any Netscape Navigator 7.x or greater and Internet Explorer 5.x or greater web browser may access the program.

2.0 Architectural Design Specification

2.1 User Commands – FTP (AKA "Clickable Buttons")

IP PDU

IP Version Internet Header Length Type of Service Total Length of Ethernet Frame Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address Options Data

TCP PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Lengths Reserved Window Size TCP Checksum Urgent Pointer Options Data

FTP PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Length Reserved Window Size FTP Checksum Urgent Pointer Options Data

2.1.1 IP PDU for the selected FTP PDU

IP PDU > *IP Version* for the selected FTP PDU

Field Name: IP Version

<u>Purpose and Definition</u>: Version is a 4-bit field that indicates the format of the internet header.

Data value (decimal): 4

Hexadecimal	4
Binary	0100
Decimal	4

IP PDU > *Internet Header Length* for the selected **FTP PDU**

Field Name: Internet Header Length

Purpose and Definition: The IHL field is a 4-bit field indicating the length of the internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Field Key: Not applicable

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Hexadecimal	0	5
Binary	0000	0101
Decimal	5	

IP PDU > *Type of Service* for the selected FTP PDU

Field Name: Type of Service

Purpose and Definition: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Field Key: The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

0	1	2	٦	4	5	6	7
Precedence		D	Т	R	0	0	

Bits 0-2: Precedence

Bit 3: (D) 0 = Normal Delay 1 = Low Delay Bit 4: (T) 0 = Normal Throughput 1 = High Throughput

Bit 5: (R) 0 = Normal Reliability 1 = High Reliability

Precedence:

111 = Network Control	011 = Flash
10 = Inter-network Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Overrided	000 = Routine

Data value (hexadecimal): 10

Hexadecimal	1	0	
Binary	0001	0000	
Decimal	16		

IP PDU > *Total Length of Ethernet Frame* for the selected FTP PDU

Field Name: Total Length of Ethernet Frame

<u>Purpose and Definition</u>: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Field Key: Not applicable

Data values (hexadecimal): 69

Hexadecimal	0	0	6	9
Binary	0000	0000	0110	1001
Decimal	0		105	
ASCII	©		-	i

IP PDU > *Identification* for the selected **FTP PDU**

Field Name: Identification

<u>Purpose and Definition:</u> Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a datagram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the datagram or any fragment could be alive in the internet.

Field Key: Not applicable

Data value (hexadecimal): AA 41

Hexadecimal	А	А	4	1
Binary	1010	1010	0100	0001

IP PDU > *Flags* for the selected FTP PDU

Field Name: Flags

Purpose and Definition: Flags is a 3-bit field that indicates directions for fragmentation.

Field Key:

Bit 0: reserved, must be 0 Bit 1: (DF) 0 = May Fragment1 = Don't FragmentBit 2: (MF) 0 = Last Fragment1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

IP PDU > *Fragment Offset* for the selected FTP PDU

Field Name: Fragment Offset

<u>Purpose and Definition</u>: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Field Key: Not applicable

Data value (decimal): 0

Data values in other bases: Binary: 0 0000 0000 0000

IP PDU > *Time to Live* for the selected FTP PDU

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the internet. This field is decreased at each point that the internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 64

Hexadecimal	4	0	
Binary	0100	0000	
Decimal	64		

IP PDU > *Protocol* for the selected **FTP PDU**

Field Name: Protocol

<u>Purpose and Definition</u>: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the internet diagram.

	<u>Field</u>	Key:			
Dec	Hex	Protocol	Dec	Hex	Protocol
0	00	Reserved	22	16	Multiplexing
1	01	ICMP	23	17	DCN
2	02	Unassigned	24	18	TAC Monitoring
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network
5	05	ST	100	64	SATNET and Backroom EXPAK
6	06	ТСР	101	65	MIT Subnet Support
7	07	UCL	102-104	66-68	Unassigned
10	0A	Unassigned	105	69	SATNET Monitoring
11	0B	Secure	106	6A	Unassigned
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core Utility
13	0D	NVP	110-113	6E-71	Unassigned
14	0E	PUP	114	72	Backroom SATNET Monitoring
15	0F	Pluribus	115	73	Unassigned
16	10	Telnet	116	74	WIDEBAND Monitoring
17	11	XNET	117	75	WIDEBAND EXPAK
20	14	Chaos	120-376	78-0178	Unassigned
21	15	User Datagram	377	0179	Reserved

Data value (hexadecimal): 06

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110
Decimal	6	5

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected **FTP PDU**

Field Name: Header Checksum

Purpose and Definition: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Field Key: Not applicable

Data value (hexadecimal): 0E 85

Hexadecimal	0	Е	8	5
Binary	0000	1110	1000	0101

IP PDU > *Source Address* for the selected **FTP PDU**

Field Name: Source Address

<u>Purpose and Definition</u>: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.39

Hexadecimal	С	0	Α	8	0	0	2	7
Binary	1100	0000	1010	1000	0000	0000	0010	0111
Decimal	Decimal 192		168		0		39	

IP PDU > *Destination Address* for the selected **FTP PDU**

Field Name: Destination Address

<u>Purpose and Definition</u>: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.101

Hexadecimal	С	0	Α	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101
Decimal	cimal 192		168		0		101	

IP PDU > *Options and Padding* for the selected **FTP PDU**

Field Name: Options and Padding

<u>Purpose and Definition</u>: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type

Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Field Key: Not applicable

Data values: Not applicable

Data values in other bases: Not applicable

IP PDU > *Data* for the selected **FTP PDU**

Field Name: Data

Purpose and Definition: The Data is a variable length field which contains the actual data that is being sent from one host to another. The data field may start with a Layer 4 header, which will give additional instructions to the application that will be receiving the data; alternately, it may be an ICMP header and not contain any user data at all.

Field Key: Not applicable

Data values (hexadecimal) : (TCP) 80 30 00 15 81 A5 16 6C 87 A3 53 5D 80 18 16 D0 11 F4 00 00 01 01 08 0A 1B 25 F3 A1 0b DD 73 58 (FTP) 50 41 53 53 20 66 31 61 32 6B 33 75 73 65 72 0D 0A

Data values in other bases:

Hexadecimal: (TCP) 0 x 80 30 00 15 81 A5 16 6C 87 A3 53 5D 80 18 16 D0 11 F4 00 00 01 01 08 0A 1B 25 F3 A1 0B DD 73 58 (FTP) 50 41 53 53 20 66 31 61 32 6B 33 75 73 65 72 0D 0A

ASCII: $(TCP) \uparrow 0 \bigcirc \bigcirc \uparrow \uparrow \bigcirc \uparrow \land S] \uparrow \bigcirc \bigcirc \uparrow \bigcirc \uparrow \bigcirc \uparrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \land \uparrow \uparrow \bigcirc \uparrow \circ X$ (FTP) P A S S S \bigcirc f 1 a 2 k 3 u s e r $\bigcirc \bigcirc$

2.1.2 TCP PDU for the selected FTP PDU

IP > TCP PDU > Source Port for the selected FTP PDU

Field Name: Source Port

<u>Purpose and Definition:</u> This 16-bit number represents the name of the application that sent the data in the IP packet.

Field Key: Not applicable

Data value (decimal): 32816

Hexadecimal	8	0	3	0
Binary	1000	0000	0011	0000
Decimal	12	28	4	8
ASCII			0	

IP > TCP PDU > *Destination Port* for the selected FTP PDU

Field Name: Destination Port

Purpose and Definition:

This 16-bit number represents the name of the application that is to receive the data contained within the IP packet. This is one of the major differences between a Layer 3 and a Layer 4 header: the Layer 3 header contains the IP address of the computer that is to receive the IP packet; once that packet has been received, the port address in the Layer 4 header ensures that the data contained within that IP packet is passed to the correct application on that computer.

Field Key:

This key indicates assigned port number values:

Dec	Port Numbers
0	Reserved
1-32767	Internet registered ("well-known") protocols
32768-98303	Reserved, to allow TCPv7-TCPv4 conversion
98304 & up	Dynamic assignment

Data value (decimal): 21 (indicates FTP)

Data values in other bases:

Hexadecimal	0	0	1	5
Binary	0000	0000	0001	0101
Decimal	()	2	1
ASCII	()	()

Source: http://www.zvon.org/tmRFC/RFC1475/Output/chapter4.html

IP > TCP PDU > *Sequence Number* for the selected FTP PDU

Field Name: Sequence Number

Purpose and Definition:

TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Field Key: Not applicable

Data value (decimal): 2175080044

Hexadecimal	8	1	Α	5	1	6	6	С
Binary	1000	0001	1010	0101	0001	0110	0110	1100
Decimal	0		60		176		60	
ASCII ©)	4		\wedge			:

IP > TCP PDU > *Acknowledgement Number* for the selected FTP PDU

Field Name: Acknowledgement Number

Purpose and Definition:

This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Field Key: Not applicable

Data value: 2275627869

Hexadecimal	8	7	Α	3	5	3	5	D	
Binary	1000	0111	1010	0011	0101	0011	0101	1101	
Decimal	135		163		8	83		93	
ASCII 1			<u> </u>		S]		

IP > TCP PDU > Header Length or Offset for the selected FTP PDU

Field Name: Header Length or Offset

Purpose and Definition:

This is identical in concept to the header length in an IP packet, except this time it indicates the length of the TCP header.

Field Key: Not applicable

Data value (bytes): 32

•

Hexadecimal	8	0
Binary	1000	0000
Decimal	12	28
ASCII		N

EdgeTech Development 32

Preliminary Design

IP > **TCP PDU** > *Reserved* for the selected **FTP PDU**

Field Name: Reserved

Purpose and Definition:

These 6 bits are unused and are always set to 0.

Field Key: Not applicable

Data value (binary): 0000 00

Hexadecimal	0	0	0	0	0	0
Binary	0000	0000	0000	0000	0000	0000
Decimal	0		0		0	
ASCII ©)	()	© ©	

IP > TCP PDU > *Control Flags* for the selected FTP PDU

Field Name: Control Flags

Purpose and Definition:

Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key:

- Urgent (URG)
- Acknowledgement (ACK)
- Push (PSH)
- Reset (RST)
- Synchronize (SYN)
- Finish (FIN)

Data value (binary): 01 1000

Data values in other bases: Not applicable

IP > TCP PDU > *Window Size* for the selected **FTP PDU**

Field Name: Window Size

Purpose and Definition:

Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key: Not applicable

Data value (decimal): 5840

Hexadecimal	1	6	D	0
Binary	0001	0110	1110	0000
Decimal	22		224	
ASCII	©		\uparrow	

IP > TCP PDU > *Checksum* for the selected FTP PDU

Field Name: Checksum

Purpose and Definition:

Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Field Key: Not applicable

Data value (hexadecimal): 11 F4

Hexadecimal	1	1	F	4
Binary	0001	0001	1111	0100
Decimal	17		244	
ASCII	©		©	
IP > TCP PDU > *Urgent Pointer* for the selected **FTP PDU**

Field Name: Urgent Pointer

Purpose and Definition:

If the Urgent flag is set to on, this value indicates where the urgent data is located.

Information Key: Not applicable

Data value: Not applicable

Data values in other bases: Not applicable

IP > TCP PDU > Options and Padding for the selected **FTP PDU**

Field Name: Options and Padding

Purpose and Definition:

Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. Again, if an option does not fill up a 32-bit word, it will be filled in with padding bits.

Field Key: Not applicable

Data value (hexadecimal): 01 01 08 0A 1B 25 F3 A1 0B DD 73 58

Hexadecimal	0	1	0	1	0	8	0	Α	1	В
Binary	0000	0001	0000	0001	0000	1000	0000	1010	0001	1011
Decimal	1	l	1	1	8	3	1	0	2	7
ASCII	(()	(()	(

Hexadecimal	2	5	F	3	Α	1	0	В	D	D
Binary	0010	0101	1111	0011	1010	0001	0000	1011	1101	1101
Decimal	3	7	24	43	16	51	1	1	22	21
ASCII	%		<u>↑</u> 1		N	()	/		

Hexadecimal	7	3	5	8	
Binary	0101	0011	0101	1000	
Decimal	115		96		
ASCII	/	Ν		N	

2.1.3 FTP PDU for the selected FTP PDU

IP >TCP > FTP Header for the FTP Packet

RFC Link: <u>http://www.ietf.org/rfc/rfc0959.txt?number=959</u>

The first four bytes of the FTP PDU specify access control identifiers, data transfer parameters or file transfer protocol (command codes are shown in parenthesis).

USER NAME (USER)

The argument field is a Telnet string identifying the user. The user identification is that which is required by the server for access to its file system. This command will normally be the first command transmitted by the user after the control connections are made (some servers may require this). Some servers may also require additional identification information in the form of a password and/or an account command. Servers may allow a new USER command to be entered at any point in order to change the access control and/or accounting information. This has the effect of flushing any user, password, and account information already supplied and beginning the login sequence again. All transfer parameters are unchanged and any file transfer in progress is completed under the old access control parameters.

PASSWORD (PASS)

The argument field is a Telnet string specifying the user's password. This command must be immediately preceded by the user name command, and, for some sites, completes the user's identification for access control. Since password information is quite sensitive, it is desirable in general to "mask" it or suppress typeout. It appears that the server has no foolproof way to achieve this. It is therefore the responsibility of the user-FTP process to hide the sensitive password information.

ACCOUNT (ACCT)

The argument field is a Telnet string identifying the user's account. The command is not necessarily related to the USER command, as some sites may require an account for login and others only for specific access, such as storing files. In the latter case the command may arrive at any time. There are reply codes to differentiate these cases for the automation: when account information is required for login, the response to a successful PASSword command is reply code 332. On the other hand, if account information is NOT required for login, the reply to a successful PASSword command is 230; and if the account information is needed for a command issued later in the dialogue, the server should return a 332 or 532 reply depending on whether it stores (pending receipt of the ACCounT command) or discards the command, respectively.

CHANGE WORKING DIRECTORY (CWD)

This command allows the user to work with a different directory or dataset for file storage or retrieval without altering his login or accounting information. Transfer parameters are similarly unchanged. The argument is a pathname specifying a directory or other system dependent file group designator.

CHANGE TO PARENT DIRECTORY (CDUP)

This command is a special case of CWD, and is included to simplify the implementation of programs for transferring directory trees between operating systems having different syntaxes for naming the parent directory. The reply codes shall be identical to the reply codes of CWD.

STRUCTURE MOUNT (SMNT)

This command allows the user to mount a different file system data structure without altering his login or accounting information. Transfer parameters are similarly unchanged. The argument is a pathname specifying a directory or other system dependent file group designator.

REINITIALIZE (REIN)

This command terminates a USER, flushing all I/O and account information, except to allow any transfer in progress to be completed. All parameters are reset to the default settings and the control connection is left open. This is identical to the state in which a user finds himself immediately after the control connection is opened. A USER command may be expected to follow.

LOGOUT (QUIT)

This command terminates a USER and if file transfer is not in progress, the server closes the control connection. If file transfer is in progress, the connection will remain open for result response and the server will then close it. If the user-process is transferring files for several USERs but does not wish to close and then reopen connections for each, then the REIN command should be used instead of QUIT. An unexpected close on the control connection will cause the server to take the effective action of an abort (ABOR) and a logout (QUIT).

DATA PORT (PORT)

The argument is a HOST-PORT specification for the data port to be used in data connection. There are defaults for both the user and server data ports, and under normal circumstances this command and its reply are not needed. If this command is used, the argument is the concatenation of a 32-bit internet host

address and a 16-bit TCP port address. This address information is broken into 8bit fields and the value of each field is transmitted as a decimal number (in character string representation). The fields are separated by commas. A port command would be:

PORT h1,h2,h3,h4,p1,p2

where h1 is the high order 8 bits of the internet host address.

PASSIVE (PASV)

This command requests the server-DTP to "listen" on a data port (which is not its default data port) and to wait for a connection rather than initiate one upon receipt of a transfer command. The response to this command includes the host and port address this server is listening on.

REPRESENTATION TYPE (TYPE)

The argument specifies the representation type as described in the Section on Data Representation and Storage. Several types take a second parameter. A single Telnet character denotes the first parameter, as is the second Format parameter for ASCII and EBCDIC; the second parameter for local byte is a decimal integer to indicate Byte size. The parameters are separated by a <SP> (Space, ASCII code 32).

The following codes are assigned for type:

\ / A - ASCII | | N - Non-print |-><-| T - Telnet format effectors E - EBCDIC| | C - Carriage Control (ASA) / ∖ I - Image

L <byte size> - Local byte Byte size

FILE STRUCTURE (STRU)

The argument is a single Telnet character code specifying file structure described in the Section on Data Representation and Storage.

The following codes are assigned for structure:

F - File (no record structure) R - Record structure P - Page structure The default structure is File.

TRANSFER MODE (MODE)

The argument is a single Telnet character code specifying the data transfer modes described in the Section on Transmission Modes. The following codes are assigned for transfer modes:

S - Stream

B - Block

C - Compressed

The default transfer mode is Stream.

RETRIEVE (RETR)

This command causes the server-DTP to transfer a copy of the file, specified in the pathname, to the server- or user-DTP at the other end of the data connection. The status and contents of the file at the server site shall be unaffected.

STORE (STOR)

This command causes the server-DTP to accept the data transferred via the data connection and to store the data as a file at the server site. If the file specified in the pathname exists at the server site, then its contents shall be replaced by the data being transferred. A new file is created at the server site if the file specified in the pathname does not already exist.

STORE UNIQUE (STOU)

This command behaves like STOR except that the resultant file is to be created in the current directory under a name unique to that directory. The 250 Transfer Started response must include the name generated.

APPEND (with create) (APPE)

This command causes the server-DTP to accept the data transferred via the data connection and to store the data in a file at the server site. If the file specified in the pathname exists at the server site, then the data shall be appended to that file; otherwise the file specified in the pathname shall be created at the server site.

ALLOCATE (ALLO)

This command may be required by some servers to reserve sufficient storage to accommodate the new file to be transferred. The argument shall be a decimal integer representing the number of bytes (using the logical byte size) of storage to be reserved for the file. For files sent with record or page structure a maximum record or page size (in logical bytes) might also be necessary; this is indicated by a decimal integer in a second argument field of the command. This second argument is optional, but when present should be separated from the first by the three Telnet characters $\langle SP \rangle R \langle SP \rangle$. This command shall be followed by a STORe or APPEnd command. The ALLO command should be treated as a NOOP (no operation) by those servers, which do not require that the maximum size of the file be declared beforehand, and those servers interested in only the maximum record or page size should accept a dummy value in the first argument and ignore it.

RESTART (REST)

The argument field represents the server marker at which file transfer is to be restarted. This command does not cause file transfer but skips over the file to the specified data checkpoint. This command shall be immediately followed by the appropriate FTP service command, which shall cause file transfer to resume.

RENAME FROM (RNFR)

This command specifies the old pathname of the file, which is to be renamed. This command must be immediately followed by a "rename to" command specifying the new file pathname.

RENAME TO (RNTO)

This command specifies the new pathname of the file specified in the immediately preceding "rename from" command. Together the two commands cause a file to be renamed.

ABORT (ABOR)

This command tells the server to abort the previous FTP service command and any associated transfer of data. The abort command may require "special action", as discussed in the Section on FTP Commands, to force recognition by the server. No action is to be taken if the previous command has been completed (including data transfer). The control connection is not to be closed by the server, but the data connection must be closed. There are two cases for the server upon receipt of this command: (1) the FTP service command was already completed, or (2) the FTP service command is still in progress.

In the first case, the server closes the data connection (if it is open) and responds with a 226 reply, indicating that the abort command was successfully processed. In the second case, the server aborts the FTP service in progress and closes the data connection, returning a 426 reply to indicate that the service request terminated abnormally. The server then sends a 226 reply, indicating that the abort command was successfully processed.

DELETE (DELE)

This command causes the file specified in the pathname to be deleted at the server site. If an extra level of protection is desired (such as the query, "Do you really wish to delete?"), it should be provided by the user-FTP process.

REMOVE DIRECTORY (RMD)

This command causes the directory specified in the pathname to be removed as a directory (if the pathname is absolute) or as a subdirectory of the current working directory (if the pathname is relative).

MAKE DIRECTORY (MKD)

This command causes the directory specified in the pathname to be created as a directory (if the pathname is absolute) or as a subdirectory of the current working directory (if the pathname is relative).

PRINT WORKING DIRECTORY (PWD)

This command causes the name of the current working directory to be returned in the reply.

LIST (LIST)

This command causes a list to be sent from the server to the passive DTP. If the pathname specifies a directory or other group of files, the server should transfer a list of files in the specified directory. If the pathname specifies a file then the server should send current information on the file. A null argument implies the user's current working or default directory. The data transfer is over the data connection in type ASCII or type EBCDIC. (The user must ensure that the TYPE is appropriately ASCII or EBCDIC). Since the information on a file may vary widely from system to system, this information may be hard to use automatically in a program, but may be quite useful to a human user.

NAME LIST (NLST)

This command causes a directory listing to be sent from server to user site. The pathname should specify a directory or other system-specific file group descriptor; a null argument implies the current directory. The server will return a stream of names of files and no other information. The data will be transferred in ASCII or

EBCDIC type over the data connection as valid pathname strings separated by <CRLF> or <NL>. (Again the user must ensure that the TYPE is correct.) This command is intended to return information that can be used by a program to further process the files automatically. For example, in the implementation of a "multiple get" function.

SITE PARAMETERS (SITE)

This command is used by the server to provide services specific to his system that are essential to file transfer but not sufficiently universal to be included as commands in the protocol. The nature of these services and the specification of their syntax can be stated in a reply to the HELP SITE command.

SYSTEM (SYST)

This command is used to find out the type of operating system at the server. The reply shall have as its first word one of the system names listed in the current version of the Assigned Numbers document [4].

STATUS (STAT)

This command shall cause a status response to be sent over the control connection in the form of a reply. The command may be sent during a file transfer (along with the Telnet IP and Synch signals--see the Section on FTP Commands) in which case the server will respond with the status of the operation in progress, or it may be sent between file transfers. In the latter case, the command may have an argument field. If the argument is a pathname, the command is analogous to the "list" command except that data shall be transferred over the control connection. If a partial pathname is given, the server may respond with a list of file names or attributes associated with that specification. If no argument is given, the server should return general status information about the server FTP process. This should include current values of all transfer parameters and the status of connections.

HELP (HELP)

This command shall cause the server to send helpful information regarding its implementation status over the control connection to the user. The command may take an argument (e.g., any command name) and return more specific

information as a response. The reply is type 211 or 214. It is suggested that HELP be allowed before entering a USER command. The server may use this reply to specify site-dependent parameters, e.g., in response to HELP SITE.

NOOP (NOOP)

This command does not affect any parameters or previously entered commands. It specifies no action other than that the server sends an OK reply.

The following is an example of the TCP PDU that would be containing in a PASSWORD (PASS) packet.

What is Contained in the Packet

Request:PASSRequest Arg:f1a2k3user

Data Values (hexadecimal): 50 41 53 53 20 66 31 61 32 6B 33 75 73 65 72 0D 0A

Data Values in Other Bases:

ASCII	Р	А	S	S	SPC	f	1	а	2
Hexadecimal	5 0	4 1	53	53	2 0	66	3 1	6 1	3 2
Binary	0101 000	0 0100 000	1 0101 00	11 0101 00	11 0010 00	00 0110 0110	0011 0001	0110 0001	0011 0010
Decimal	80	65	83	83	32	102	49	97	59
ASCII	К	3	u	S	e	r	\r	\n	
Hexadecimal	6 B	33	75	73	65	72	0 D	0 A	
Binary	0110 1011	0011 0011	0111 0101	0111 0011	0110 0101	0111 0010	0000 1101	0000 101	0
Decimal	107	51	117	115	101	114	13	10	

2.2 User Commands - ICMP (AKA "Clickable Buttons")

IP PDU

IP Version Internet Header Length Type of Service Total Length of Ethernet Frame Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address Options Data

ICMP PDU

Type Code ICMP Checksum Identifier Data

2.2.1 IP PDU for the selected ICMP PDU

IP PDU > *Version* for the selected **ICMP PDU**

Field Name: Version

<u>Purpose and Definition</u>: Version is a 4-bit field that indicates the format of the internet header.

Data value (decimal): 4

Hexadecimal	4
Binary	0100
Decimal	4

IP PDU > *Internet Header Length* for the selected ICMP PDU

Field Name: Internet Header Length

Purpose and Definition: The IHL field is a 4 bit field indicating the length of the internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Field Key: Not applicable

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Hexadecimal	0	5	
Binary	0000	0101	
Decimal	5		

IP PDU > *Type of Service* for the selected ICMP PDU

Field Name: *Type of Service*

<u>Purpose and Definition:</u> Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Field Key: The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

0	1	2	3	4	5	6	7
Precedence			D	Т	R	0	0

Bits 0-2: Precedence

Bit 3: (D)	0 = Normal Delay	1 = Low Delay
Bit 4: (T)	0 = Normal Throughput	1 = High Throughput
Bit 5: (R)	0 = Normal Reliability	1 = High Reliability
Precedence:		

111 = Network Control	011 = Flash
10 = Internetwork Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Overrided	000 = Routine

Data value (hexadecimal): 00

Hexadecimal	0	0	
Binary	0000	0000	
Decimal	0		

IP PDU > *Total Length of Ethernet Frame* for the selected ICMP PDU

Field Name: Total Length of Ethernet Frame

<u>Purpose and Definition</u>: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

<u>Field Key:</u> *Not applicable*

Data values (decimal): 84

Hexadecimal	0	0	5	4	
Binary	0000	0000	0101	0100	
Decimal	()	84		
ASCII	(Т		

IP PDU > *Identification* for the selected ICMP PDU

Field Name: Identification

<u>Purpose and Definition:</u> Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a datagram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the datagram or any fragment could be alive in the internet

Field Key: Not applicable

Data value (hexadecimal): 00 00

Hexadecimal	0	0	0	0
Binary	0000	0000	0000	0000

IP PDU > *Flags* for the selected ICMP PDU

Field Name: Flags

Purpose and Definition: Flags is a 3-bit field that indicates directions for fragmentation.

Field Key:

Bit 0: reserved	, must be 0
Bit 1: (DF)	0 = May Fragment
Bit 2: (MF)	0 = Last Fragment

1 = Don't Fragment 1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

IP PDU > *Fragment Offset* for the selected ICMP PDU

Field Name: Fragment Offset

<u>Purpose and Definition</u>: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Field Key: Not applicable

Data value (decimal): 0

Data values in other bases: Binary: 0000 0000 0000

IP PDU > *Time to Live* for the selected ICMP PDU

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the internet. This field is decreased at each point that the internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 64

Hexadecimal	4	0		
Binary	0100	0000		
Decimal	64			

IP PDU > *Protocol* for the selected ICMP PDU

Field Name: Protocol

<u>Purpose and Definition:</u> Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the internet diagram.

	Field 1	Key:			
Dec	Hex	Protocol	Dec	Hex	Protocol
0	00	Reserved	22	16	Multiplexing
1	01	ICMP	23	17	DCN
2	02	Unassigned	24	18	TAC Monitoring
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network
5	05	ST	100	64	SATNET and Backroom EXPAK
6	06	ТСР	101	65	MIT Subnet Support
7	07	UCL	102-104	66-68	Unassigned
10	0A	Unassigned	105	69	SATNET Monitoring
11	0B	Secure	106	6A	Unassigned
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core Utility
13	0D	NVP	110-113	6E-71	Unassigned
14	0E	PUP	114	72	Backroom SATNET Monitoring
15	0F	Pluribus	115	73	Unassigned
16	10	Telnet	116	74	WIDEBAND Monitoring
17	11	XNET	117	75	WIDEBAND EXPAK
20	14	Chaos	120-376	78-0178	Unassigned
21	15	User Datagram	377	0179	Reserved

Data value (hexadecimal): 01

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0001
Decimal	1	

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the Selected ICMP PDU

Field Name: Header Checksum

Purpose and Definition: The Header Checksum is a 16-bit field. This CRC algorithm is the 16-bit one's complement sum of all the 16-bit words in the header. For purposes of computing the checksum, the value of the checksum field is initially zero. When both header checksums are the same, then the header bits are correct. If either checksums vary, then a packet will need to be resent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Field Key: Not applicable

Data value (hexadecimal): B8 CC

Hexadecimal	В	8	С	С
Binary	1011	1000	1100	1100

IP PDU > *Source Address* for the Selected ICMP PDU

Field Name: Source Address

<u>Purpose and Definition</u>: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Field Key: Not applicable

Data value: 192.168.0.39

Hexadecimal	С	0	Α	8	0	0	2	7
Binary	1100	0000	1010	1000	0000	0000	0010	0111
Decimal	19	92	16	58	()	3	9

IP PDU > *Destination Address* for the selected ICMP PDU

Field Name: Destination Address

<u>Purpose and Definition</u>: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Field Key: Not applicable

Data value: 192.168.0.101

Hexadecimal	С	0	Α	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101
Decimal	19	92.	16	8.	C).	1()1

IP PDU > *Options and Padding* for the selected ICMP PDU

Field Name: Options and Padding

<u>Purpose and Definition</u>: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type

Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Field Key: Not applicable

Data values: Not applicable

Data values in other bases: Not applicable

2.2.2 ICMP PDU for the selected ICMP PDU

IP > ICMP Header > *Type* for the selected **ICMP PDU**

Field Name: Type

<u>Purpose and Definition</u>: The type is an 8-bit field that identifies what sort of message the ICMP protocol is sending.

	Field	Key:			
Dec	Hex	Message Type	Dec	Hex	Message Type
0	00	Echo Reply	16	10	Information Reply
1	01	Unassigned	17	11	Address Mask Request
2	02	Unassigned	18	12	Address Mask Reply
3	03	Destination Unreachable	19	13	Reserved (for Security)
4	04	Source Quench	20-29	14-1D	Reserved (for Robustness Experiment)
5	05	Redirect	30	1E	Traceroute
6	06	Alternate Host Address	31	1F	Datagram Conversion Error
7	07	Unassigned	32	20	Mobile Host Redirect
8	08	Echo	33	21	IPv6 Where-Are-You
9	09	Router Advertisement	34	22	IPv6 I-Am-Here
10	0A	Router Solicitation	35	23	Mobile Registration Request
11	0B	Time Exceeded	36	24	Mobile Registration Reply
12	0C	Parameter Problem	37	25	Domain Name Request
13	0D	Timestamp	38	26	Domain Name Reply
14	0 E	Timestamp Reply	39	27	SKIP
15	0F	Information Request	40	28	Photuris
		_	41-255	29-FF	Reserved

Data value: 8 (Echo (ping) Request)

Data values in other bases:

Hexadecimal	0	8
Binary	0000	1000
Decimal	8	3

RFC Link: http://www.iana.org/assignments/icmp-parameters

IP > ICMP Header > *Code* for the selected **ICMP PDU**

Field Name: Code

<u>Purpose and Definition</u>: Code is an 8-bit field that provides further information about the associated type field.

Field Key:

Туре	Name		Туре	Name
0	Echo	Reply (used by "PING")	7	Unassigned
	0	No Code	8	Echo (used by "PING")
1	Unas	ssigned		0 No Code
2	Unas	ssigned	9	Router Advertisement
3	Dest	ination Unreachable		0 No Code
	0	Net Unreachable	10	Router Selection
	1	Host Unreachable		0 No Code
	2	Protocol Unreachable	11	Time Exceeded
	3	Port Unreachable		0 Time to Live exceeded in Transit
	4	Fragmentation needed and		1 Fragment Reassembly Time Exceeded
		Don't Fragment was Set	12	Parameter Problem
	5	Source Route Failed		0 Pointer indicates the error
	6	Destination Network Unknown		1 Missing a Required Option
	7	Destination Host Unknown		2 Bad Length
	8	Source Host Isolated	13	Timestamp
	9	Communication with Destination		0 No Code
		Network is Administratively Prohibited	14	Timestamp Reply
	10	Communication with Destination		0 No Code
		Host is Administratively Prohibited	15	Information Request
	11	Destination Network Unreachable		0 No Code
		for Type of Service	16	Information Reply
	12	2 Destination Host Unreachable for		0 No Code
		Type of Service	17	Address Mask Request
4	Sourc	ce Quench		0 No Code
	0	No Code	18	Address Mask Reply
5	Redir	rect		0 No Code
	0	Redirect Datagram for the Network	19	Reserved (for Security)
	1	Redirect Datagram for the Host	20-29	Reserved (for Robustness Experiment)
	2	Redirect Datagram for the Type of	30	Traceroute
		Service and Network	31	Datagram Conversion Error
	3	Redirect Datagram for the Type of	32	Mobile Host Redirect
		Service and Host	33	IPv6 Where-Are-You
6	Alter	nate Host Address	34	IPv6 I-Am-Here
	0	Alternate Address for Host	35	Mobile Registration Request
			36	Mobile Registration Reply
	Data	value (decimal): 0		

Hexadecimal	0	0			
Binary	0000	0000			
Decimal	0				
ASCII	©				

IP > ICMP Header > *Checksum* for the selected **ICMP PDU**

Field Name: Checksum

<u>Purpose and Definition:</u> The checksum is the 16-bit one's complement of the one's complement sum of the ICMP message, starting with the ICMP type. For computing the checksum, the checksum field should initially be zero.

Field Key: Not applicable

Data value (hexadecimal): C9 15

Hexadecimal	С	9	1	5
Binary	1100	1001	0001	0101
Decimal	20)1	2	1
ASCII		N		

IP > ICMP Header > *Identifier* for the selected ICMP PDU

Field Name: Identifier

<u>Purpose and Definition</u>: The identifier is a 16-bit field that is used in matching echoes and replies for when the code field is zero.

Field Key: Not applicable

Data value (hexadecimal): 70 60

Hexadecimal	7	0	6	0
Binary	0111	0000	0110	0000
Decimal	11	12	9	6
ASCII	I)	د	

IP > ICMP Header > *Sequence* for the selected **ICMP PDU**

Field Name: Sequence

<u>Purpose and Definition</u>: The sequence is a 16-bit field that is used in matching echoes and replies for when the code field is zero.

Field Key: Not applicable

Data value (hexadecimal): 00 00

Hexadecimal	0	0	0	0	
Binary	0000	0000	0000	0000	
Decimal	0		0		
ASCII	(©		

IP > ICMP Header > *Data* for the selected **ICMP PDU**

Field Name: Data

<u>Purpose and Definition</u>: The data is a variable-length field that contains the actual information that is sent in the ping packet.

Field Key: Not applicable

Data value (hexadecimal): 42 B1 89 3F 00 00 00 2C C6 07 00 00 00 00 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

Hexadecimal	4	2	В	1	8	9	3	F	0	0
Binary	0100	0010	1011	0001	1000	1001	0011	1111	0000	0000
Decimal	6	6	1′	77	1.	37	6	3	()
ASCII	I	3		\land		<u>۲</u>		?	()
					•				•	
Hexadecimal	0	0	0	0	0	0	2	С	С	6
Binary	0000	0000	0000	0000	0000	0000	0010	1100	1100	0110
Decimal	()	(0	()	4	4	19	98
ASCII	0		()	()		,	/	N
Hexadecimal	0	7	0	0	0	0	0	0	0	0
Binary	0000	0111	0000	0000	0000	0000	0000	0000	0000	0000
Decimal		7	(0	()	(0	()
ASCII	(\supset	()	()	()	(\supset
Hexadecimal	0	0	1	0	1	1	1	2	1	3
Binary	0000	0000	0001	0000	0001	0001	0001	0010	0001	0011
Decimal	()	1	6	1	7	1	8	1	9
ASCII	(\supset	()	()	()	(\supset
Hexadecimal	1	4	1	5	1	6	1	7	1	8
Binary	0001	0100	0001	0101	0001	0110	0001	0111	0001	1000
Decimal	2	0	2	1	2	2	2	3	2	4
ASCII	(\supset	()	()	()	(\supset
Hexadecimal	1	9	1	A	1	В	1	C	1	D
Binary	0001	1001	0001	1010	0001	1011	0001	1100	0001	1101
Decimal	2	5	2	.6	2	7	2	8	2	9
ASCII	((0	()	(0	(\supset

Hexadecimal	1	Е	1	F	2	0	2	1	2	2
Binary	0001	1110	0001	1111	0010	0000	0010	0001	0010	0010
Decimal	3	0	3	1	3	2	3	3	3	4
ASCII	((0	SPA	ACE		!	ć	د.
Hexadecimal	2	3	2	4	2	5	2	6	2	7
Binary	0010	0011	0010	0100	0010	0101	0010	0110	0010	0111
Decimal	3	5	3	6	3	7	3	8	3	9
ASCII	#	¥		\$	0	6	8	κ .		4
Hexadecimal	2	8	2	9	2	Α	2	В	2	С
Binary	0010	1000	0010	1001	0010	1010	0010	1011	0010	1100
Decimal	4	0	4	-1	4	2	4	3	4	4
ASCII	(()	,	k	-	F		,
Hexadecimal	2	D	2	Е	2	F	3	0	3	1
Binary	0010	1101	0010	1110	00010	1111	0011	0000	0011	0001
Decimal	4	5	4	6	4	7	48		49	
ASCII	•	-	-		,	/		0	1	
Hexadecimal	3	2	3	3	3	4	3	5	3	6
Binary	0011	0010	0011	0011	0011	0100	0011	0101	0011	0110
Decimal	5	0	5	1	5	2	5	3	5	4
ASCII	4	2		3	2	1	4	5	(5
Havadagimal	2	7								

Hexadecimal	3	7	
Binary	0011	0111	
Decimal	55		
ASCII	7		

2.3 User Commands - TELNET (AKA "Clickable Buttons")

IP PDU

IP Version Internet Header Length Type of Service Total Length of Ethernet Frame Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address Options Data

TCP PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Lengths Reserved Window Size TCP Checksum Urgent Pointer Options Data

TELNET PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Length Reserved Window Size FTP Checksum Urgent Pointer Options Data

2.3.1 IP PDU for the selected TELNET PDU

IP PDU > *Internet Header Length* for the selected **TELNET PDU**

Field Name: IP Version

Purpose and Definition: Version is a 4-bit field that indicates the format of the internet header.

Field Key:

4 = IPv4

6 = IPv6

Data value (decimal): 4

Hexadecimal	4
Binary	0110

IP PDU > *Internet Header Length* for the selected **TELNET PDU**

Field Name: Internet Header Length

Purpose and Definition: The IHL field is a 4-bit field indicating the length of the internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Field Key: Not applicable.

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Hexadecimal	0	5	
Binary	0000 010		
Decimal	5		

IP PDU > *Type of Service* for the selected TELNET PDU

Field Name: *Type of Service*

Purpose and Definition: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Field Key: The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

Bits 0-2: Precedence

Bit 3: (D) $0 = Normal Delay$	1 = Low Delay
Bit 4: (T) $0 =$ Normal Throughput	1 = High Throughput
Bit 5: (R) $0 =$ Normal Reliability	1 = High Reliability

Precedence:

111 = Network Control 011 = Flash

110 = Internet work Control 010 = Immediate

- 101 = CRITIC/ECP 001 = Priority
- 100 =Flash Overridden 000 =Routine

Data value (hexadecimal): 00

Hexadecimal	1	0
Binary	0001	0000

IP PDU > *Total Length of Ethernet Frame* for the selected **TELNET PDU**

Field Name: Total Length of Ethernet Frame

Purpose and Definition: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including internet header and data. The maximum size is 216-1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Field Key: Not applicable

Data value: 00 3E

Data values in other bases (hexadecimal):

Hexadecimal	8	0
Binary	1111	0000
IP PDU > *Identification* for the selected **TELNET PDU**

Field Name: Identification

Purpose and Definition: Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a datagram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the datagram or any fragment could be alive in the internet.

Field Key: Not applicable

Data value (hexadecimal): C7 57

Hexadecimal	C	7	5	7
Binary	1100	0111	0101	0111

IP PDU > *Flags* for the selected **TELNET PDU**

Field Name: Flags

Purpose and Definition: Flags is a 3-bit field that indicates directions for fragmentation.

Field Key:

Bit 0: reserved, must be 0 Bit 1: (DF) 0 = May Fragment 1 = Don't Fragment Bit 2: (MF) 0 = Last Fragment 1 = More Fragment

Data value (binary): 001

Data values in other bases:

Not Applicable

IP PDU > *Fragment Offset* for the selected **TELNET PDU**

Field Name: Fragment Offset

Purpose and Definition: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Field Key: Not applicable

Data value (decimal): 0

Data values in other bases:

Binary: 0 0000 0000 0000

IP PDU > *Time to Live* for the selected FTP PDU

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the internet. This field is decreased at each point that the internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 64

Hexadecimal	4	0	
Binary	0010	0000	
Decimal	64		

IP PDU > *Protocol* for the selected **TELNET PDU**

Field Name: Protocol

Purpose and Definition: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the internet diagram.

Field Key:

Dec	Hex	Protocol
0	0	Reserved
1	1	ICMP
2	2	Unassigned
3	3	Gateway-to-Gateway
4	4	CMCC Gateway Monitoring Message
5	5	ST
6	6	ТСР
7	7	UCL
10	А	Unassigned
11	В	Secure
12	С	BBN RCC Monitoring
13	D	NVP
14	E	PUP
15	F	Pluribus
16	10	Telnet
17	11	XNET
20	14	Chaos
21	15	User Datagram
22	16	Multiplexing
23	17	DCN
24	18	TAC Monitoring
25-76	19-4C	Unassigned
77	4D	Any local network
100	64	SATNET and Backroom EXPAK

101	65	MIT Subnet Support
102-104	66-68	Unassigned
105	69	SATNET Monitoring
106	6A	Unassigned
107	6B	Internet Packet Core Utility
110-113	6E-71	Unassigned
114	72	Backroom SATNET Monitoring
115	73	Unassigned
116	74	WIDEBAND Monitoring
117	75	WIDEBAND EXPAK
120-376	78-178	Unassigned
377	179	Reserved

Data value (hexadecimal): 06

Hexadecimal	0	6	
Binary	0000	0110	
Decimal	6		

IP PDU > *Header Checksum* for the selected **TELNET PDU**

Field Name: Header Checksum

Purpose and Definition: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

Field Key: Not applicable

Data value (hexadecimal): F1 85

Hexadecimal	F	1	8	5
Binary	1111	0001	1000	0101

IP PDU > *Source Address* for the selected **TELNET PDU**

Field Name: Source Address

Purpose and Definition: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.101

Hexadecimal	С	0	A	8
Binary	1100	0000	1010	1000
Decimal	192		16	58

Hexadecimal	0	0	6	5
Binary	0000	0000	0110	0101
Decimal	0		101	

IP PDU > Destination Address for the selected TELNET PDU

Field Name: Destination Address

Purpose and Definition: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Field Key: *Not applicable*

Data value (decimal): 192.168.0.39

Hexadecimal	С	0	A	8
Binary	1100	0000	1010	1000
Decimal	192 168		58	

Hexadecimal	0	0	2	7
Binary	0000	0000	0010	0111
Decimal	0 39		9	

IP PDU > Options and Padding for the selected TELNET PDU

Field Name: Options and Padding

Purpose and Definition: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Field Key: Not applicable

Data value: *Not applicable*

Data values in other bases:

Not applicable

2.3.2 TELNET PDU for the selected TELNET PDU

IP > TCP PDU > Source Port for the selected **TELNET PDU**

Field Name: Source Port

Purpose and Definition: This 16-bit number represents the name of the application that sent the data in the IP packet.

Field Key: Not applicable

Data value: TELNET (23)

Hexadecimal	1	7	
Binary	0001	0111	
Decimal	23		

IP > TCP PDU > Destination Port for the selected **TELNET PDU**

Field Name: Destination Port

Purpose and Definition: This 16-bit number represents the name of the application that is to receive the data contained within the IP packet. This is one of the major differences between a Layer 3 and a Layer 4 header: the Layer 3 header contains the IP address of the computer that is to receive the IP packet; once that packet has been received, the port address in the Layer 4 header ensures that the data contained within that IP packet is passed to the correct application on that computer.

Field Key: This key indicates assigned port number values:

Dec	Port Numbers
0	Reserved
1-32767	Internet registered ("well-known") protocols
32768-98303	Reserved, to allow TCPv7-TCPv4 conversion
98304 & up	Dynamic assignment

Data value (decimal): 80 25

Hexadecimal	8	0	2	5
Binary	1000	0000	0010	0101
Decimal	128		3	7

IP > TCP PDU > *Sequence Number* for the selected **TELNET PDU**

Field Name: Sequence Number

Purpose and Definition: TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Field Key: Not applicable

Data value (decimal): 2635302920

Hexadecimal	9	D	1	3
Binary	1001	1101	0001	0011
Decimal	157		1	9

Hexadecimal	8	8	0	8
Binary	1000	1000	0000	1000
Decimal	136		8	3

IP > TCP PDU > *Acknowledgement Number* for the selected **TELNET PDU**

Field Name: Acknowledgement Number

Purpose and Definition: This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Field Key: Not applicable

Data value (decimal): 2526101253

Hexadecimal	9	6	9	1
Binary	1001	0110	1001	0001
Decimal	150		14	45

Hexadecimal	3	F	0	5
Binary	0011	1111	0000	0101
Decimal	63		4	5

IP > TCP PDU > *Header Length* for the selected **TELNET PDU**

Field Name: Header Length or Offset

Purpose and Definition: This is identical to the header length in an IP packet, except this time it indicates the length of the TCP header

Field Key: Not Applicable

Data value (bytes): 32

Hexadecimal	8	0	
Binary	1000	0000	
Decimal	128		

IP > TCP PDU > *Reserved* for the selected **TELNET PDU**

Field Name: Reserved

Purpose and Definition: This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Field Key: Not Applicable

Data value: 0000 00

Hexadecimal	0	0
Binary	0000	00

IP > TCP PDU > *Control Flags* for the selected **TELNET PDU**

Field Name: Control Flags

Purpose and Definition: Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key:

- Urgent (URG)
- Acknowledgement (ACK)
- Push (PSH)
- Reset (RST)
- Synchronize (SYN)
- Finish (FIN)

Data value (binary): 01 1000

Data values in other bases:

Not applicable

IP > TCP PDU > Window Size for the selected **TELNET PDU**

Field Name: Window Size

Purpose and Definition: Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key: Not applicable

Data value (decimal): 321120

Hexadecimal	7	D	7	8
Binary	0111	1101	0111	1000
Decimal	321		12	20

IP > TCP PDU > *Checksum* for the selected **TELNET PDU**

Field Name: Checksum

Purpose and Definition: Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP reruns the CRC on the entire packet to ensure the checksum is the same.

Field Key: Not applicable

Data value (hexadecimal): 59 89

Hexadecimal	5	9	8	9
Binary	0101	1001	1000	1001
Decimal	89		13	37

IP > **TCP PDU** > *Options and Padding* for the selected **TELNET PDU**

Field Name: Options and Padding

Purpose and Definition: Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. Again, if an option does not fill up a 32-bit word, it will be filled in with padding bits.

Field Key: Not applicable

Data value (hexadecimal): 01 01 08 0A 0B D1 8D EC 1A AC 06 AB

Hexadecimal	0	1	0	1		
Binary	0000	0001	0000	0001		
Hexadecimal	0	8	0	A		
Binary	0000	1000	0000	1010		
Hexadecimal	0	В	D	1		
Binary	0000	1011	1101	0001		
Hexadecimal	8	D	E	C		
Binary	1000	1101	1110	1100		
Hexadecimal	1	A	A	C		
Binary	0001	1010	1010	1100		
Hexadecimal	0	6	A	В		
Binary	0000	0110	1010	1011		

IP > TCP > TELNET PDU for the selected **TELNET PDU**

Field Name: *TELNET PDU*

RFC Link

Purpose and Definition: PASS (Password)

The argument field is a SSH string specifying the user's password. This command must be immediately preceded by the user name command, and, for some sites, completes the user's identification for access control. All information below is encrypted

Field Key: Not applicable

Data value: 03 B6 51 11 6A 46 12 36 4F 46 C9 63 B1 A4 B5 48 A2 BA 68 1C 42 17 AB D2 CE 8E 6D 3F 49 7E EB 36 A0 1B 16 62 E4 0F D7 55 DD 5F EB 52 64 B9 A7 62

Hexadecimal	5	0	6	1
Binary	0101	0000	0110	0001
Decimal	80		9	7
ASCII	Р		6	ı

Hexadecimal	7	3	7	3
Binary	0111	0011	0111	0011
Decimal	115		11	15
ASCII	S		S	3

0	0111	0110	1111
119		111	
W		0	
	W	W	W

Hexadecimal	7	2	6	4
-------------	---	---	---	---

Binary	0111	0010	0110	0100
Decimal	114		1()0
ASCII	r d		1	

Hexadecimal	3	A	2	0
Binary	0011	1010	0010	0000
Decimal	58		32	
ASCII	:		()

2.4 User Commands – ARP (AKA "Clickable Buttons")

ARP PDU

Hardware Address Type Protocol Address Type Hardware Address Length Port Address Length Operation Source Hardware Address Source Protocol Address Target Hardware Address

2.4.1 ARP PDU for the selected ARP PDU

ARP PDU > Hardware Address Type for the selected ARP PDU

Field Name: Hardware Address Type

Purpose and Definition: The Hardware Address Type is the physical media that communicates on the network.

Field Key:

1 for Ethernet 2 for IEEE 802 LAN

Data value (hexadecimal): 00 01

Hexadecimal	0	0	0	1
Binary	0000	0000	0000	0001

ARP PDU > *Protocol Address Type* for the selected ARP PDU

Field Name: Protocol Address Type

Purpose and Definition: Protocol Address Type defines the protocol that the terminals are using to connect with one another.

Field Key:

2048 IPv4 (0x0800)

Data value (hexadecimal): 08 00

Hexadecimal	0	8	0	0
Binary	0000	1000	0000	0000

ARP PDU > *Hardware Address Length* for the selected **ARP PDU**

Field Name: Hardware Address Length

Purpose and Definition: Hardware Address Length is the length of the hardware address in bytes.

Field Key:

6 Ethernet / IEE 802

Data value (hexadecimal): 06

Hexadecimal	0	6
Binary	0000	0110

ARP PDU > *Protocol Address Length* for the selected ARP PDU

Field Name: Protocol Address Length

Purpose and Definition: Protocol Address Length determines the length of the protocol address in bytes.

Field Key:

4 = IPv4

Data value (hexadecimal): 04

Hexadecimal	0	4
Binary	0000	0100

ARP PDU > *Operation* for the selected **ARP PDU**

Field Name: Operation

Purpose and Definition: Operation determines whether a request or a response is being performed.

Field Key:

1 = Request

2 = Reply

Data value (hexadecimal): 00 01

Hexadecimal	0	0	0	1
Binary	0000	0000	0000	0001

ARP PDU > *Sender Hardware Address* for the selected **ARP PDU**

Field Name: Sender Hardware Address

Purpose and Definition: Sender Hardware Address is the Physical address or MAC address of the network adapter of the sender's terminal.

Field Key:

00000C	Cisco
00000E	Fujitsu
00000F	NeXT
00001D	Cabletron
000020	DIAB (Data Intdustrier AB)
000022	Visual Technology
00002A	TRW
000032	GPT Limited (reassigned from GEC Computers Ltd)
00005A	S & Koch
00005E	IANA
000065	Network General
00006B	MIPS
000077	MIPS
00007A	Ardent
000089	Cayman Systems Gatorbox
000093	Proteon
00009F	Ameristar Technology
0000A2	Wellfleet
0000A3	Network Application Technology
0000A6	Network General (internal assignment, not for products)
0000A7	NCD:X-terminals
0000A9	Network Systems
0000AA	Xerox:Xerox machines
0000B3	CIMLinc
0000B7	Dove:Fastnet

0000BC	Allen-Bradley
0000C0	Western Digital
0000C5	Farallon phone net card
0000C6	HP Intelligent Networks Operation (formerly Eon Systems)
0000C8	Altos
0000C9	Emulex:Terminal Servers
0000D7	Dartmouth College (NED Router)
0000D8	3Com? Novell? PS/2
0000DD	Gould
0000DE	Unigraph
0000E2	Acer Counterpoint
0000EF	Alantec
0000FD	High Level Hardvare (Orion, UK)
000102	BBN:BBN internal usage (not registered)
0020AF	3COM???
001700	Kabel
008064	Wyse Technology / Link Technologies
00802B	IMAC???
00802D	Xylogics, Inc. Annex terminal servers
00808C	Frontier Software Development
0080C2	IEEE 802.1 Committee
0080D3	Shiva
00AA00	Intel
00DD00	Ungermann-Bass
00DD01	Ungermann-Bass
020701	Racal InterLan
020406	BBN:BBN internal usage (not registered)
026086	Satelcom MegaPac (UK)
02608C	3Com:IBM PC; Imagen; Valid; Cisco
02CF1F	CMC:Masscomp; Silicon Graphics; Prime EXL
080002	3Com (Formerly Bridge)
080003	ACC (Advanced Computer Communications)
080005	Symbolics:Symbolics LISP machines
080008	BBN
080009	Hewlett-Packard

08000A	Nestar Systems
080009	Hewlett-Packard
08000A	Nestar Systems
08000B	Unisys
080011	Tektronix, Inc
080014	Excelan:BBN Butterfly, Masscomp, Silicon Graphics
080017	NSC
08001A	Data General
08001B	Data General
08001E	Apollo
080020	Sun:Sun Machines
080022	NBI
080025	CDC
080026	Norsk Data (Nord)
080027	PCS Computer Systems GmbH
080028	TI
08002B	DEC
08002E	Metaphor
08002F	Prime Computer Prime 50-Series LHC300
080036	Intergraph:CAE stations
080037	Fujitsu-Xerox
080038	Bull
080039	Spider Systems
080041	DCA Digital Comm. Assoc.
080045	???? (May be Xylogics, but they claim not to know this number)
080046	Sony
080047	Sequent
080049	Univation
08004C	Encore
08004E	BICC
080056	Stanford University
080058	??? DECsystem-20
08005A	IBM
080067	Comdesign
080068	Ridge

080069	Silicon Graphics
08006E	Concurrent Masscomp
080075	DDE (Danish Data Elektronik A/S)
08007C	Vitalink TransLAN III
080080	XIOS
080086	Imagen/QMS
080087	Xyplex terminal servers
080089	Kinetics AppleTalk-Ethernet interface
08008B	Pyramid
08008D	XyVision:XyVision machines
080090	Retix Inc:Bridges
484453	HDS???
800010	AT&T
AA0000	DEC:Obsolete
AA0001	DEC:Obsolete
AA0002	DEC:Obsolete
AA0003	Global physical address for some DEC machines
AA0004	DEC:Local logical address for systems running DECNET

Data value (hexadecimal): 00 00 E6 34 ED A3

Hexadecimal	0	0	0	0
Binary	0000	0000	0000	0000
Hexadecimal	Е	6	3	4
Binary	1110	0110	0011	0100
Hexadecimal	E	D	A	3
Binary	1110	1101	1010	0011

ARP PDU > *Target Hardware Address* for the selected **ARP PDU**

Field Name: Target Hardware Address

Purpose and Definition: Target Hardware Address is the physical address or MAC address of the network adapter of the target terminal.

Field Key:

4 = IPv46 = IPv6

Data value (hexadecimal): 00 00 00 00 00 00 00

Data values in other bases:

Not Applicable

ARP PDU > *Target Protocol Address* for the selected **ARP PDU**

Field Name: Target Protocol Address

Purpose and Definition: Target Protocol Address is the protocol of the sender's computer that is used to identify the targets protocol.

Field Key:

4 = IPv4

6 = IPv6

Data value (decimal): 192.168.0.145

Hexadecimal	C	0	A	8
Binary	1100	0000	1010	1000
Decimal	192		168	

Hexadecimal	0	0	9	1
Binary	0000	0000	1001	0001
Decimal	0		145	

2.5 User Commands – SSH (AKA "Clickable Buttons")

IP PDU

IP Version Internet Header Length Type of Service Total Length of Ethernet Frame Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address Options Data

TCP PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Lengths Reserved Window Size TCP Checksum Urgent Pointer Options Data

SSH PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Length Reserved Window Size SSH Checksum Urgent Pointer Options Data

2.5.1 IP PDU for the selected SSH PDU

IP PDU > *IP Version* for the selected SSH PDU

Field Name: IP Version

<u>Purpose and Definition</u>: Version is a 4-bit field that indicates the format of the Internet header.

Data value (decimal): 4

Hexadecimal	4
Binary	0100
Decimal	4
IP PDU > *Internet Header Length* for the selected **SSH PDU**

Field Name: Internet Header Length

Purpose and Definition: The IHL field is a 4-bit field indicating the length of the internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Field Key: Not applicable

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Hexadecimal	5
Binary	0101
Decimal	5

IP PDU > *Type of Service* for the selected SSH PDU

Field Name: *Type of Service*

<u>Purpose and Definition:</u> Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Field Key: The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

0	1	2	3	4	5	6	7
	Preceder	nce	D	Т	R	0	0

Bits 0-2: Precedence

Bit 3: (D)	0 = Normal Delay	1 = Low Delay
Bit 4: (T)	0 = Normal Throughput	1 = High Throughput
Bit 5: (R)	0 = Normal Reliability	1 = High Reliability
Precedence:		
111	$\mathbf{M} = 1 \mathbf{O} + 1$	

111 = Network Control	011 = Flash
110 = Internetwork Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Overrided	000 = Routine

Data value (hexadecimal): 00

Hexadecimal	0	0
Binary	0000	0000
Decimal	0	

IP PDU > *Total Length of Ethernet Frame* for the selected SSH PDU

Field Name: Total Length of Ethernet Frame

<u>Purpose and Definition</u>: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Field Key: Not applicable

Data values (hexadecimal): 00 64

Hexadecimal	0	0	6	4
Binary	0000	0000	0110	0100
Decimal	0		100	

IP PDU > *Identification* for the selected SSH PDU

Field Name: Identification

<u>Purpose and Definition:</u> Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a datagram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the datagram or any fragment could be alive in the internet.

Field Key: Not applicable

Data value (hexadecimal): 30 CA

Hexadecimal	3	0	С	А
Binary	0011	0000	1100	1010

IP PDU > *Flags* for the selected SSH PDU

Field Name: Flags

Purpose and Definition: Flags is a 3-bit field that indicates directions for fragmentation.

Field Key:

Bit 0: reserve	d, must be 0	
Bit 1: (DF)	0 = May Fragment	1 :
Bit 2: (MF)	0 = Last Fragment	1

1 = Don't Fragment 1 = More Fragment

Data value (binary): 001

Data values in other bases: Not applicable

IP PDU > *Fragment Offset* for the selected SSH PDU

Field Name: Fragment Offset

<u>Purpose and Definition</u>: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Field Key: Not applicable

Data value (decimal): 0

Data values in other bases: Binary: 0 0000 0000 0000

IP PDU > *Time to Live* for the selected SSH PDU

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the internet. This field is decreased at each point that the internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 64

Hexadecimal	4	0
Binary	0100	0000
Decimal	64	

IP PDU > *Protocol* for the selected SSH PDU

Field Name: Protocol

<u>Purpose and Definition</u>: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the internet diagram.

	Field 1	Key:			
Dec	Hex	Protocol	Dec	Hex	Protocol
0	00	Reserved	22	16	Multiplexing
1	01	ICMP	23	17	DCN
2	02	Unassigned	24	18	TAC Monitoring
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network
5	05	ST	100	64	SATNET and Backroom EXPAK
6	06	ТСР	101	65	MIT Subnet Support
7	07	UCL	102-104	66-68	Unassigned
10	0A	Unassigned	105	69	SATNET Monitoring
11	0B	Secure	106	6A	Unassigned
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core Utility
13	0D	NVP	110-113	6E-71	Unassigned
14	0E	PUP	114	72	Backroom SATNET Monitoring
15	0F	Pluribus	115	73	Unassigned
16	10	SSH	116	74	WIDEBAND Monitoring
17	11	XNET	117	75	WIDEBAND EXPAK
20	14	Chaos	120-376	78-0178	Unassigned
21	15	User Datagram	377	0179	Reserved

Data value (hexadecimal): 06

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110
Decimal	6	

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected SSH PDU

Field Name: Header Checksum

Purpose and Definition: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Field Key: Not applicable

Data value (hexadecimal): 87 AE

Hexadecimal	8	7	А	Е
Binary	1000	0111	1010	1110

IP PDU > *Source Address* for the selected SSH PDU

Field Name: Source Address

<u>Purpose and Definition</u>: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.101

Hexadecimal	С	0	Α	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101
Decimal	19	92	168		0		101	

IP PDU > *Destination Address* for the selected SSH PDU

Field Name: Destination Address

<u>Purpose and Definition</u>: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.39

Hexadecimal	С	0	Α	8	0	0	2	7
Binary	1100	0000	1010	1000	0000	0000	0010	0111
Decimal	19	92	168		0		39	

2.5.2 TCP PDU for the selected SSH PDU

IP > TCP PDU > *Source Port* for the selected SSH PDU

Field Name: Source Port

Purpose and Definition:

This 16-bit number represents the name of the application that sent the data in the IP packet.

Field Key: Not applicable

Data value: 1243

Hexadecimal	0	4	D	В	
Binary	0000	0100	1101	1011	
Decimal	1243				

IP > TCP PDU > *Destination Port* for the selected SSH PDU

Field Name: Destination Port

Purpose and Definition:

This 16-bit number represents the name of the application that is to receive the data contained within the IP packet. This is one of the major differences between a Layer 3 and a Layer 4 header: the Layer 3 header contains the IP address of the computer that is to receive the IP packet; once that packet has been received, the port address in the Layer 4 header ensures that the data contained within that IP packet is passed to the correct application on that computer.

Field Key:

This key indicates assigned port number values:DecPort Numbers0Reserved1-32767Internet registered ("well-known") protocols

1-32/0/	Internet registered (well-known) protocols
32768-98303	Reserved, to allow TCPv7-TCPv4 conversion
98304 & up	Dynamic assignment

Data value (decimal): 1243

Data values in other bases:

Hexadecimal	0	4	D	В	
Binary	0000	0100	1101	1011	
Decimal	1243				

Source: http://www.zvon.org/tmRFC/RFC1475/Output/chapter4.html

IP > TCP PDU > *Sequence Number* for the selected SSH PDU

Field Name: Sequence Number

Purpose and Definition:

TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Field Key: Not applicable

Data value (decimal): 4008673261

Hexadecimal	Е	Е	Е	F	7	F	Е	D
Binary	1110	1110	1110	1111	0111	1111	1110	1101
Decimal	23	38	23	39	12	27	23	37

IP > TCP PDU > *Acknowledgement Number* for the selected **SSH PDU**

Field Name: Acknowledgement Number

Purpose and Definition:

This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Field Key: Not applicable

Data value: 3798775616

Hexadecimal	E	2	6	С	В	7	4	0
Binary	1110	0010	0110	1100	1011	0111	0100	0000
Decimal	22	26	10)8	18	33	6	4

IP > TCP PDU > Header Length or Offset for the selected SSH PDU

Field Name: Header Length or Offset

Purpose and Definition:

This is identical in concept to the header length in an IP packet, except this time it indicates the length of the TCP header.

Field Key: Not applicable

Data value (bytes): 32

Hexadecimal	8	0			
Binary	1000	0000			
Decimal	128				

IP > TCP PDU > *Control Flags* for the selected SSH PDU

Field Name: Control Flags

Purpose and Definition:

Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key:

- Urgent (URG)
- Acknowledgement (ACK)
- Push (PSH)
- Reset (RST)
- Synchronize (SYN)
- Finish (FIN)

Data value (binary): 0001 1000

Hexadecimal	1	8		
Binary	0001 1000			
Decimal	24			

IP > TCP PDU > *Window Size* for the selected SSH PDU

Field Name: Window Size

Purpose and Definition:

Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key: Not applicable

Data value (decimal): 32120

Hexadecimal	7	D	7	8
Binary	0111	1101	0111	1000
Decimal	125		12	20

IP > TCP PDU > *Checksum* for the selected SSH PDU

Field Name: Checksum

Purpose and Definition:

Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Field Key: Not applicable

Data value (hexadecimal): 8B CA

Hexadecimal	8	В	С	Α
Binary	1000	1011	1100	1010
Decimal	139		20	02

IP > TCP PDU > Options and Padding for the selected SSH PDU

Field Name: Options and Padding

Purpose and Definition:

Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. Again, if an option does not fill up a 32-bit word, it will be filled in with padding bits.

Field Key: Not applicable

Data value (hexadecimal): 01 01 08 0A 0B D1 8D EC 1A AC 06 AB

Hexadecimal	0	1	0	1
Binary	0000	0001	0000	0001

IP > TCP PDU > *Timestamp* for the selected SSH PDU

Field Name: Timestamp

Purpose and Definition:

Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Field Key:

This key indicates assigned flag options:

Dec Port Numbers

0 time stamps only, stored in consecutive 32-bit words,

- 1 each timestamp is preceded with internet address of the registering entity,
- 3 the internet address fields are pre-specified. An IP module only registers its timestamp if it matches its own address with the next specified internet address.

Data value (hexadecimal): 08 0A 14 42 6F 30 27 47 32 1F

Hexadecimal	0	8	0	Α	1	4	4	2	6	F
Binary	0000	1000	0000	1010	0001	0100	0100	0010	0110	1111
Decimal	8	3	1	0	2	0	6	6	11	1
ASCII	(()	()	Ε	3	()

Hexadecimal	3	0	2	7	4	7	3	2	1	F
Binary	0011	0000	0010	0111	0100	0111	0011	0010	0001	1111
Decimal	4	8	3	9	7	1	5	0	3	1
ASCII	()		4	(ĩ	4	2	(

2.5.3 SSH PDU for the selected SSH PDU

IP >TCP > SSH PDU for the SSH Packet

RFC Link: <u>http://www.ietf.org/rfc/rfc0959.txt?number=959</u>

PASS (Password)

The argument field is a SSH string specifying the user's password. This command must be immediately preceded by the user name command, and, for some sites, completes the user's identification for access control. All information below is encrypted.

What is Contained in the Packet Request: PASS

<u>Data Values (hexadecimal)</u>: 03 B6 51 11 6A 46 12 36 4F 46 C9 63 B1 A4 B5 48 A2 BA 68 1C 42 17 AB D2 CE 8E 6D 3F 49 7E EB 36 A0 1B 16 62 E4 0F D7 55 DD 5F EB 52 64 B9 A7 62

Data Values in Other Bases

Hexadecimal	0	3	В	6	5	1	1	1	6	А
Binary	0000	0011	1011	0110	0101	0001	0001	0001	0110	1010
Decimal		3	1	82	8	1	1	7	1()6
ASCII	()		\land	(2	()	j	j
					•					
Hexadecimal	4	6	1	2	3	6	4	F	4	6
Binary	0100	0110	0001	0010	0011	0110	0100	1111	0100	0110
Decimal	7	0	1	8	5	4	7	9	7	0
ASCII	I	F	(0	(6	()	I	Г т.
	-	-	-	-	-	-	-			
Hexadecimal	С	9	6	3	В	1	Α	4	В	5
Binary	1100	1001	0110	0011	1011	0001	1010	0100	1011	0101
Decimal	20	01	9	9	1'	77	16	54	18	31
ASCII		N		с	/	N		Ν		7
Hexadecimal	4	8	Α	2	В	Α	6	8	1	С
Binary	0100	1000	1010	0010	1011	1010	0110	1000	0001	1000
Decimal	7	2	10	62	1'	78	1()4	2	8
ASCII	H	H		N		N	H	H	()
Hexadecimal	4	2	1	7	Α	В	D	2	С	Е
Binary	0100	0010	0001	0111	1010	1011	1101	0010	1100	1110
Decimal	6	6	2	3	1'	71	21	10	20)6

Hexadecimal	8	E	6	D	3	F	4	9	7	Е
Binary	1000	1110	0110	1101	0011	1111	0100	1001	0111	1110
Decimal	14	42	10	09	6	3	7	3	12	26
ASCII	/	Ν	r	n		?	-	Ι	~	~
Hexadecimal	Е	В	3	6	Α	0	1	В	1	6
Binary	1110	1011	0011	0110	1010	0000	0001	1011	0001	0110
Decimal	23	35	5	54	10	50	2	7	2	2
ASCII		N	(6	/	\land	()	()
Hexadecimal	6	2	Е	4	0	F	D	7	5	5
Binary	0110	0010	1110	0100	0000	1111	1101	0111	0101	0101
Decimal	9	8	22	28	1	5	2	15	8	5
ASCII	1)		Ւ	()		N	Ţ	J
Hexadecimal	D	D	5	F	Е	В	5	2	6	4
Binary	1101	1101	0101	1111	1110	1011	0101	0010	0110	0100
Decimal	22	21	9	5	23	35	8	2	10	00
ASCII	/	Ν		_	/	N	I	R		đ
									•	
Hexadecimal	В	9	Α	7	6	2				
Binary	1011	1001	1010	0111	0110	0010				
Decimal	18	35	10	67	9	8				

 \uparrow

b

ASCII

 $\mathbf{\Lambda}$

2.6 User Commands (AKA "Clickable Buttons")

IP PDU

IP Version Internet Header Length Type of Service Total Length of Ethernet Frame Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address Options Data

UDP PDU

Source Port Destination Port Length UDP Checksum Data

2.6.1 IP PDU for the selected UDP PDU

IP PDU > *IP Version* for the selected UDP PDU

Field Name: IP Version

<u>Purpose and Definition</u>: Version is a 4-bit field that indicates the format of the Internet header.

Data value (decimal): 4

Hexadecimal	4
Binary	0100
Decimal	4

IP PDU > *Internet Header Length* for the selected **UDP PDU**

Field Name: Internet Header Length

<u>Purpose and Definition</u>: The IHL field is a 4-bit field indicating the length of the Internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Field Key: Not applicable

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Hexadecimal	0	5
Binary	0000	0101
Decimal	4	5

IP PDU > *Type of Service* for the selected UDP PDU

Field Name: Type of Service

<u>Purpose and Definition:</u> Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Field Key: The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

0	1	2	٦	4	5	6	7
	Preceden	ice	D	Т	R	0	0

Bits 0-2: Precedence

Bit 3: (D) 0 = Normal Delay1 = Low DelayBit 4: (T) 0 = Normal Throughput1 = High ThroughputBit 5: (R) 0 = Normal Reliability1 = High Reliability

Precedence:

111 = Network Control	011 = Flash
110 = Internetwork Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Override	000 = Routine

Data value (hexadecimal): 10

Data values in other bases:

Hexadecimal	1	0
Binary	0001	0000
Decimal	1	6

IP PDU > *Total Length of Ethernet Frame* for the selected UDP PDU

Field Name: Total Length of Ethernet Frame

<u>**Purpose and Definition:**</u> Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including Internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Field Key: Not applicable

Data values (hexadecimal): 128

Hexadecimal	0	1	2	8
Binary	0000	0001	0010	1000
Decimal	-	1	40)

IP PDU > *Identification* for the selected UDP PDU

Field Name: Identification

<u>Purpose and Definition:</u> Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a datagram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the datagram or any fragment could be alive in the Internet.

Field Key: Not applicable

Data value (hexadecimal): BBD7

Hexadecimal	В	В	D	7
Binary	1011	1011	1101	0111

IP PDU > *Flags* for the selected UDP PDU

Field Name: Flags

Purpose and Definition: Flags is a 3-bit field that indicates directions for fragmentation.

Field Key:

Bit 0: reserved, must be 0 Bit 1: (DF) 0 = May Fragment1 = Don't FragmentBit 2: (MF) 0 = Last Fragment1 = More Fragment

Data value (binary): 0000

Data values in other bases: Not applicable

IP PDU > *Fragment Offset* for the selected UDP PDU

Field Name: Fragment Offset

Purpose and Definition: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Field Key: Not applicable

Data value (decimal): 0

Data values in other bases: Binary: 0000 0000

IP PDU > *Time to Live* for the selected UDP PDU

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the Internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 64

Hexadecimal	4	0
Binary	0100	0000
Decimal	6	4

IP PDU > *Time to Live* for the selected UDP PDU

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the Internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 64

Hexadecimal	4	0	
Binary	0100	0000	
Decimal	64		

IP PDU > *Protocol* for the selected UDP PDU

Field Name: Protocol

<u>Purpose and Definition</u>: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

	<u>Field Key:</u>							
Dec	Hex	Protocol	Dec	Hex	Protocol			
0	00	Reserved	22	16	Multiplexing			
1	01	ICMP	23	17	DCN			
2	02	Unassigned	24	18	TAC Monitoring			
3	03	Gateway-to-Gateway	25-76	19 - 4C	Unassigned			
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network			
5	05	ST	100	64	SATNET and Backroom EXPAK			
6	06	ТСР	101	65	MIT Subnet Support			
7	07	UCL	102-104	66-68	Unassigned			
10	0A	Unassigned	105	69	SATNET Monitoring			
11	0B	Secure	106	6A	Unassigned			
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core Utility			
13	0D	NVP	110-113	6E-71	Unassigned			
14	0E	PUP	114	72	Backroom SATNET Monitoring			
15	0F	Pluribus	115	73	Unassigned			
16	10	Telnet	116	74	WIDEBAND Monitoring			
17	11	XNET	117	75	WIDEBAND EXPAK			
20	14	Chaos	120-376	78-0178	Unassigned			
21	15	User Datagram	377	0179	Reserved			

Data value (hexadecimal): 11

Data values in other bases:

Hexadecimal	1	1
Binary	0001	0001
Decimal	1	7

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected **UDP PDU**

Field Name: Header Checksum

Purpose and Definition: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Field Key: Not applicable

Data value (hexadecimal): 3F 47

Hexadecimal	3	F	4	7	
Binary	0011	1111	0100	0111	

IP PDU > *Source Address* for the selected **UDP PDU**

Field Name: Source Address

<u>Purpose and Definition</u>: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.71

Hexadecimal	С	0	Α	8	0	0	4	7
Binary	1100	0000	1010	1000	0000	0000	0100	0111
Decimal	192		168		0		71	
IP PDU > *Destination Address* for the selected UDP PDU

Field Name: Destination Address

<u>Purpose and Definition</u>: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.255

Hexadecimal	С	0	А	8	0	0	F	F
Binary	1100	0000	1010	1000	0000	0000	1111	1111
Decimal	19	92	16	58	()	25	55

IP PDU > *Options and Padding* for the selected UDP PDU

Field Name: Options and Padding

<u>Purpose and Definition</u>: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type

Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Field Key: Not applicable

Data values: Not applicable

Data values in other bases: Not applicable

IP PDU > *Data* for the selected **UDP PDU**

Field Name: Data

<u>Purpose and Definition</u>: The Data is a variable length field, which contains the actual data that is being sent from one host to another. The data field may start with a Layer 4 header, which will give additional instructions to the application that will be receiving the data; alternately, it may be an ICMP header and not contain any user data at all.

Field Key: Not applicable

Data values in other bases:

ASCII: (UDP) ↑ Extended ASCII

IP PDU > *Source Port* for the selected UDP PDU

RFC Link: http://www.ietf.org/rfc/rfc0768.txt?number=768

Field Name: Source Port

Purpose and Definition: Source Port is an optional field, when meaningful, it indicates the port of the sending process, and may be assumed to be the port to which a reply should be addressed in the absence of any other information. If not used, a value of zero is inserted.

Field Key: Not applicable

Data value (decimal): 45

Hexadecimal	02	0D
Binary	0010	1101
Decimal	45	

IP PDU > *Destination Port* for the selected UDP PDU

Field Name: Destination Port

<u>**Purpose and Definition**</u>: Destination Port has a meaning within the context of a particular Internet destination address.

Field Key: Not applicable

Data value (decimal): 45

Hexadecimal	02	0D
Binary	0010	1101
Decimal	45	

IP PDU > *Length* for the selected UDP PDU

Field Name: Length

<u>Purpose and Definition</u>: Length is the length in octets of this user datagram including this header and the data (This means the minimum value of the length is eight).

Field Key: Not applicable

Data value (decimal): 280

Hexadecimal	01	01	08
Binary	0001	0001	1000
Decimal	Decimal		

IP PDU > *Checksum* for the selected UDP PDU

Field Name: Checksum

<u>Purpose and Definition</u>: Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two octets.

Field Key: Not applicable

Data value (decimal): E9 DB

Hexadecimal	Е	9	D	В
Binary	1110	1001	1101	1011

IP PDU > *Data* for the selected UDP PDU

Field Name: Data

Purpose and Definition:

Field Key: Not applicable

Data values in other bases:

(ASCII): ↑ Extended ASCII

2.6.2 UDP PDU for the selected UDP PDU

IP > UDP Header> *Source Port* for the selected UDP PDU

RFC Link: http://www.ietf.org/rfc/rfc0768.txt?number=768

Field Name: Source Port

<u>Purpose and Definition</u>: Source Port is an optional field, when meaningful, it indicates the port of the sending process, and may be assumed to be the port to which a reply should be addressed in the absence of any other information. If not used, a value of zero is inserted.

Field Key: Not applicable

Data value (decimal): 45

Hexadecimal	02	0D
Binary	0010	1101
Decimal	45	

IP > UDP Header > *Destination Port* for the selected **UDP PDU**

Field Name: Destination Port

<u>**Purpose and Definition**</u>: Destination Port has a meaning within the context of a particular internet destination address.

Field Key: Not applicable

Data value (decimal): 45

Hexadecimal	02	0D
Binary	0010	1101
Decimal	45	

IP > UDP Header > *Length* for the selected **UDP PDU**

Field Name: Length

<u>Purpose and Definition</u>: Length is the length in octets of this user datagram including this header and the data (This means the minimum value of the length is eight).

Field Key: Not applicable

Data value (decimal): 280

Hexadecimal	01	01	08
Binary	0001	0001	1000
Decimal	280		

IP > UDP Header > *Checksum* for the selected **UDP PDU**

Field Name: Checksum

<u>Purpose and Definition</u>: Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two octets.

Field Key: Not applicable

Data value (decimal): E9 DB

Hexadecimal	Е	9	D	В
Binary	1110	1001	1101	1011

IP > UDP Header > *Data* for the selected **UDP PDU**

Field Name: Data

Purpose and Definition:

Field Key: Not applicable

Data values in other bases:

(ASCII): ↑ Extended ASCII

2.7 User Commands – PING (AKA "Clickable Buttons")

IP PDU

IP Version Internet Header Length Type of Service Total Length of Ethernet Frame Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address Options Data

ICMP PDU

Type Code ICMP Checksum Identifier Data

PING PDU

Type Code PING Checksum Identifier Sequence Number Data

2.7.1 IP PDU for the selected PING PDU

IP PDU > Differentiated Services Field for the selected PING

RFC Link: http://www.ietf.org/rfc/rfc0768.txt?number=768

Field Name: Differentiated Services Field

<u>Purpose and Definition</u>: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Field Key: The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

0	1	2	3	4	5	6	7
	Preceden	ice	D	Т	R	0	0

Bits 0-2: Precedence

Bit 3: (D)	0 = Normal Delay	1 = Low Delay
Bit 4: (T)	0 = Normal Throughput	1 = High Throughput
Bit 5: (R)	0 = Normal Reliability	1 = High Reliability

Precedence:

111 = Network Control	011 = Flash
110 = Internetwork Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Overrided	000 = Routine

Data value (decimal): 0

Hexadecimal	0	0
Binary	0000	0000
Decimal	0	

IP PDU> *Flags* for the selected PING

Field Name: Flags

Purpose and Definition: Flags is a 3-bit field that indicates directions for fragmentation.

Field Key:

Bit 0: reserved, must be 0	
Bit 1: (DF) $0 = May Fragment$	1 = Don't Fragment
Bit 2: (MF) 0 = Last Fragment	1 = More Fragment

Data value (hexadecimal): 4

Hexadecimal	0	4
Binary	0000	0100
Decimal		4

IP PDU> Fragment offset for the selected PING

Field Name: Fragment offset

<u>Purpose and Definition</u>: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Field Key: Not applicable

Data value (decimal): 0

Data values in other bases: Binary: 0 0000 0000 0000

IP PDU > *Time to Live* for the selected **PING**

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the Internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 40

Hexadecimal	2	8
Binary	0010	1000
Decimal	4	0

IP PDU> Protocol for the selected PING

Field Name: Protocol

<u>**Purpose and Definition**</u>: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

Field	Key:				
Dec	Hex	Protocol	Dec	Hex	Protocol
0	00	Reserved	22	16	Multiplexing
1	01	ICMP	23	17	DCN
2	02	Unassigned	24	18	TAC Monitoring
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network
5	05	ST	100	64	SATNET and Backroom EXPAK
6	06	ТСР	101	65	MIT Subnet Support
7	07	UCL	102-104	66-68	Unassigned
10	0A	Unassigned	105	69	SATNET Monitoring
11	0B	Secure	106	6A	Unassigned
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core Utility
13	0D	NVP	110-113	6E-71	Unassigned
14	0E	PUP	114	72	Backroom SATNET Monitoring
15	0F	Pluribus	115	73	Unassigned
16	10	Telnet	116	74	WIDEBAND Monitoring
17	11	XNET	117	75	WIDEBAND EXPAK
20	14	Chaos	120-376	78-0178	Unassigned
21	15	User Datagram	377	0179	Reserved

Data value (decimal): 1

Hexadecimal	0	1
Binary	0000	0001
Decimal]	

IP PDU> Header Checksum for the selected PING

Field Name: Header Checksum

Purpose and Definition: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

Field Key: Not applicable

Data value (decimal): B8 CC

Hexadecimal	В	8	С	С
Binary	1011	1000	1100	1100

IP PDU> *Source* for the selected PING

Field Name: Source

<u>Purpose and Definition</u>: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.39

Hexadecimal	С	0	Α	8	0	0	2	7
Binary	1100	0000	1010	1000	0000	0000	0010	0111
Decimal	19	92	16	58	()	3	9

IP PDU > *Destination* for the selected **PING**

Field Name: Destination

<u>Purpose and Definition</u>: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.101

Hexadecimal	С	0	Α	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101
Decimal	19	92	16	58	()	10)1

2.7.2 ICMP PDU for the selected PING PDU

IP > ICMP Header > *Type* for the selected **PING PDU**

Field Name: Type

<u>Purpose and Definition</u>: The type is an 8-bit field that identifies what sort of message the ICMP protocol is sending.

Field Key:

Dec	Hex	Message Type	Dec	Hex	Message Type
0	00	Echo Reply	16	10	Information Reply
1	01	Unassigned	17	11	Address Mask Request
2	02	Unassigned	18	12	Address Mask Reply
3	03	Destination Unreachable	19	13	Reserved (for Security)
4	04	Source Quench	20-29	14 - 1D	Reserved (for Robustness Experiment)
5	05	Redirect	30	1E	Traceroute
6	06	Alternate Host Address	31	1F	Datagram Conversion Error
7	07	Unassigned	32	20	Mobile Host Redirect
8	08	Echo	33	21	IPv6 Where-Are-You
9	09	Router Advertisement	34	22	IPv6 I-Am-Here
10	0A	Router Solicitation	35	23	Mobile Registration Request
11	0B	Time Exceeded	36	24	Mobile Registration Reply
12	0C	Parameter Problem	37	25	Domain Name Request
13	0D	Timestamp	38	26	Domain Name Reply
14	0 E	Timestamp Reply	39	27	SKIP
15	0F	Information Request	40	28	Photuris
			41-255	29-FF	Reserved

Data value: 8 (Echo (ping) Request)

Data values in other bases:

Hexadecimal	0	8
Binary	0000	1000
Decimal	8	3

RFC Link: http://www.iana.org/assignments/icmp-parameters

IP > ICMP Header > *Code* **for the selected PING PDU**

Field Name: Code

<u>Purpose and Definition</u>: Code is an 8-bit field that provides further information about the associated type field.

Field Key:

Туре	Name		Туре	Name
0	Echc	Reply (used by "PING")	7	Unassigned
	0	No Code	8	Echo (used by "PING")
1	Unas	ssigned		0 No Code
2	Unas	ssigned	9	Router Advertisement
3	Dest	ination Unreachable		0 No Code
	0	Net Unreachable	10	Router Selection
	1	Host Unreachable		0 No Code
	2	Protocol Unreachable	11	Time Exceeded
	3	Port Unreachable		0 Time to Live exceeded in Transit
	5	Fragmentation needed and		1 Fragment Reassembly Time Exceeded
		Don't Fragment was Set	12	Parameter Problem
	5	Source Route Failed		0 Pointer indicates the error
	6	Destination Network Unknown		1 Missing a Required Option
	7	Destination Host Unknown		2 Bad Length
	8	Source Host Isolated	13	Timestamp
	13	Communication with Destination		0 No Code
		Network is Administratively Prohibited	14	Timestamp Reply
	14	Communication with Destination		0 No Code
		Host is Administratively Prohibited	15	Information Request
	15	Destination Network Unreachable		0 No Code
		for Type of Service	16	Information Reply
	16	Destination Host Unreachable for		0 No Code
		Type of Service	17	Address Mask Request
4	Sourc	e Quench		0 No Code
	0	No Code	18	Address Mask Reply
5	Redir	rect		0 No Code
	0	Redirect Datagram for the Network	19	Reserved (for Security)
	1	Redirect Datagram for the Host	20-29	Reserved (for Robustness Experiment)
	2	Redirect Datagram for the Type of	30	Traceroute
		Service and Network	31	Datagram Conversion Error
	4	Redirect Datagram for the Type of	32	Mobile Host Redirect
		Service and Host	33	IPv6 Where-Are-You
6	Alter	nate Host Address	34	IPv6 I-Am-Here
	0	Alternate Address for Host	35	Mobile Registration Request
			36	Mobile Registration Reply
	Data	value (decimal): 0		

Hexadecimal	0	0
Binary	0000	0000
Decimal	()

IP > ICMP Header > *Checksum* for the selected PING PDU

Field Name: Checksum

<u>Purpose and Definition:</u> The checksum is the 16-bit one's complement of the one's complement sum of the ICMP message, starting with the ICMP type. For computing the checksum, the checksum field should initially be zero.

Field Key: Not applicable

Data value (hexadecimal): C9 15

Hexadecimal	С	9	1	5	
Binary	1100	1001	0001	0101	
Decimal	20)1	21		

IP > ICMP Header > *Identifier* for the selected **PING PDU**

Field Name: Identifier

<u>Purpose and Definition</u>: The identifier is a 16-bit field that is used in matching echoes and replies for when the code field is zero.

Field Key: Not applicable

Data value (hexadecimal): 70 60

Hexadecimal	7	0	6	0	
Binary	0111	0000	0110	0000	
Decimal	11	12	96		

IP > ICMP Header > *Sequence* for the selected PING PDU

Field Name: Sequence

<u>Purpose and Definition</u>: The sequence is a 16-bit field that is used in matching echoes and replies for when the code field is zero.

Field Key: Not applicable

Data value (hexadecimal): 00 00

Hexadecimal	0	0	0	0	
Binary	0000	0000	0000	0000	
Decimal	()	0		

IP > ICMP Header > *Data* for the selected **PING PDU**

Field Name: Data

<u>Purpose and Definition</u>: The data is a variable-length field that contains the actual information that is sent in the ping packet.

Field Key: Not applicable

Data value (hexadecimal): 00 01 03 1E E2 24 00 00 F8 1F 00 85 08 00 45 00 00 54 00 00 40 00 40 01 B8 CC C0 A8 00 27 C0 A8 00 65 08 00 C9 15 70 60 00 00 42 B1 89 3F 00 00 00 02 C C6 07 00 00 00 00 10 11 12 13 14 15 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37

Hexadecimal	0	0	0	1	0	3	1	Е	Е	2
Binary	0000	0000	0000	0000	000	0011	0001	1110	1110	0010
Decimal	()		1	-	3	3	0	226	
ASCII	0)	(0	(D	(
Hexadecimal	2	4	0	0	0	0	F	8	1	F
Binary	0010	0100	0000	0000	0000	0000	1111	1000	0001	1111
Decimal	3	6	(0	(0	24	42	3	1
ASCII	•	5	()	(0			(6
Hexadecimal	0	0	8	5	0	8	0	0	4	5
Binary	0000	0000	1000	0101	0000	1000	0000	0000	0100	0101
Decimal	()	1.	33	8		0		69	
ASCII	()			(0	()	I	
Hexadecimal	0	0	0	0	5	4	0	0	0	0
Binary	0000	0000	0000	0000	0101	0100	0000	0000	0000	0000
Decimal	()	(0	8	34	()	()
ASCII)	(0		Γ	()	(\Box
				-	-	-	-	-	-	
Hexadecimal	4	0	0	0	4	0	0	1	В	8
Binary	0100	0000	0000	0000	0100	0000	0000	0001	1011	1000
Decimal	6	4	(0	6	4	-	1	18	34
ASCII	(4	Ð	(0	(Ð	©			
Hexadecimal	C	C	C	0	A	8	0	0	2	7
Binary	1100	1100	1100	0000	1010	1000	0000	0000	0010	0111
Decimal	20)4	19	92	10	68	()	3	9
ASCII							()		<u>د</u>

							-				
Hexadecimal	С	0	Α	8	0	0	6	5	0	8	
Binary	1100	0000	1010	1000	0000	0000	0110	0101	0000	1000	
Decimal	19	92	10	68	(0 10)1	8	3	
ASCII					(6	e	(
Hexadecimal	0	0	С	9	1	5	7	0	6	0	
Binary	0000	0000	1100	1001	0001	0101	0111	0000	0110	0000	
Decimal	()	20	01	2	1	1	12	9	6	
ASCII	((1)	د	,	
	1										
Hexadecimal	0	0	0	0	4	2	b	1	8	9	
Binary	0000	0000	0000	0000	0100	0010	1011	0001	1000	1001	
Decimal	()	(0	6	6	17	77	13	37	
ASCII	()	(0	H	3					
Hexadecimal	3	F	0	0	0	0	0	0	0	0	
Binary	0011	1111	0000	0000	0000	0000	0000	0000	0000	0000	
Decimal	6	3	()	()	(0	()	
ASCII	ć	?	(0)	((3	(с)	(0	
	l			-		-		-		-	
Hexadecimal	2	С	с	6	0	7	0	0	0	0	
Binary	0010	1100	1100	0110	0000	0111	0000	0000	0000	0000	
Decimal	4	4	19	98		7		0		0	
ASCII		2			(0	(0	©		
		-									
Hexadecimal	0	0	0	0	0	0	1	0	1	1	
Binary	0000	0000	0000	0000	0000	0000	0001	0000	0001	0001	
Decimal	()	(0	()	1	6	1	7	
ASCII	((3	(0	((3	Ô		((3)	
		-			<u> </u>	-		-		-	
Hexadecimal	1	2	1	3	1	4	1	5	2	6	
Binary	0001	0010	0001	0011	0001	0100	0001	0101	0010	0110	
Decimal	1	8	1	9	2	0	2	21	3	8	
ASCII	()	Q)	()	(C	8	х	
		-				-		-			
Hexadecimal	2	7	2	8	2	9	2	Α	2	В	
Binary	0010	0111	0001	1000	0010	1001	0010	1010	0010	1011	
Decimal	3	9	4	0	4	1	4	2	4	3	
ASCII		د		()	>	k	-	F	
	L			<u>`</u>		,			1		
Hexadecimal	2	С	2	F	3	0	3	1	3	2	
Binary	0010	1100	0010	111	0011	0000	0011	0001	0011	0010	
Decimal	4	4	4	7	4	8	4	9	5	0	
			1	/		1		1	-	1	

Hexadecimal	3	3	3	4	3	5	3	6	3	7
Binary	0011	0011	0011	0100	0000	0101	0011	0110	0011	0111
Decimal	5	1	52		53		54		5	5
ASCII		3	2	4	5		(5		7

2.8 User Commands – HTTP (AKA "Clickable Buttons")

IP PDU

IP Version Internet Header Length Type of Service Total Length of Ethernet Frame Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address Options Data

TCP PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Lengths Reserved Window Size TCP Checksum Urgent Pointer Options Data

HTTP PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Length Reserved Window Size HTTP Checksum Urgent Pointer Options Data

2.8.1 IP PDU for the selected HTTP PDU

IP PDU > *IP Version* for the selected HTTP PDU

Field Name: IP Version

<u>Purpose and Definition</u>: Version is a 4-bit field that indicates the format of the Internet header.

Data value (decimal): 4

Hexadecimal	4
Binary	0100
Decimal	4

IP PDU> *Internet Header Length* for the selected HTTP PDU

Field Name: Internet Header Length

<u>Purpose and Definition</u>: The IHL field is a 4-bit field indicating the length of the Internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Field Key: Not applicable

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Hexadecimal	0	5
Binary	0000	0101
Decimal	5	

IP PDU > *Type of Service* for the selected HTTP PDU

Field Name: *Type of Service*

<u>Purpose and Definition:</u> Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Field Key: The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

0	1	2	3	4	5	6	7
Precedence			D	Т	R	0	0

Bits 0-2: Precedence

Bit 3: (D)	0 = Normal Delay	1 = Low Delay
Bit 4: (T)	0 = Normal Throughput	1 = High Throughput
Bit 5: (R)	0 = Normal Reliability	1 = High Reliability

Precedence:

111 = Network Control	011 = Flash
10 = Internetwork Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Overrided	000 = Routine

Data value (hexadecimal): 00

Hexadecimal	0	0
Binary	0000	0000
Decimal	00	

IP PDU > *Total Length of Ethernet Frame* for the selected HTTP PDU

Field Name: Total Length of Ethernet Frame

<u>Purpose and Definition</u>: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including Internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Field Key: Not applicable

Data values (hexadecimal): 570

Hexadecimal	0	2	3	А
Binary	0000	0010	0011	1010
Decimal	570			

IP PDU > *Identification* for the selected HTTP PDU

Field Name: Identification

<u>Purpose and Definition:</u> Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a datagram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the datagram or any fragment could be alive in the Internet.

Field Key: Not applicable

Data value (hexadecimal): 3C 05

Hexadecimal	3	С	0	5
Binary	0011	1100	0000	0101
IP PDU > *Flags* for the selected HTTP PDU

Field Name: Flags

Purpose and Definition: Flags is a 3-bit field that indicates directions for fragmentation.

Field Key:

Bit 0: reserved, must be 0 Bit 1: (DF) 0 = May Fragment1 = Don't FragmentBit 2: (MF) 0 = Last Fragment1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

IP PDU > *Fragment Offset* for the selected HTTP PDU

Field Name: Fragment Offset

<u>Purpose and Definition</u>: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Field Key: Not applicable

Data value (decimal): 0

Data values in other bases: Binary: 0 0000 0000 0000

IP PDU > *Time to Live* for the selected HTTP PDU

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the Internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in Internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the Internet. This field is decreased at each point that the Internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bound the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 64

Hexadecimal	4	0		
Binary	0100	0000		
Decimal	64			

IP PDU > *Protocol* for the selected HTTP PDU

Field Name: Protocol

<u>Purpose and Definition</u>: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the Internet diagram.

Field	Key:				
Dec	Hex	Protocol	Dec	Hex	Protocol
0	0	Reserved	22	16	Multiplexing
1	1	ICMP	23	17	DCN
2	2	Unassigned	24	18	TAC Monitoring
3	3	Gateway-to-Gateway	25-76	19-4C	Unassigned
4	4	CMCC Gateway Monitoring Message	77	4D	Any local network
5	5	ST	100	64	SATNET and Backroom EXPAK
6	6	TCP	101	65	MIT Subnet Support
7	7	UCL	102-104	66-68	Unassigned
10	А	Unassigned	105	69	SATNET Monitoring
11	В	Secure	106	6A	Unassigned
12	С	BBN RCC Monitoring	107	6B	Internet Packet Core Utility
13	D	NVP	110-113	6E-71	Unassigned
14	Е	PUP	114	72	Backroom SATNET Monitoring
15	F	Pluribus	115	73	Unassigned
16	10	Telnet	116	74	WIDEBAND Monitoring
17	11	XNET	117	75	WIDEBAND EXPAK
20	14	Chaos	120-376	78-178	Unassigned
21	15	User Datagram	377	179	Reserved

Data value (hexadecimal): 06

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110
Decimal		6

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected HTTP PDU

Field Name: Header Checksum

Purpose and Definition: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Field Key: Not applicable

Data value (hexadecimal): 7A 57

Hexadecimal	7	А	5	7
Binary	0111	1010	0101	0111

IP PDU > *Source Address* for the selected HTTP PDU

Field Name: Source Address

<u>Purpose and Definition</u>: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.12

Hexadecimal	С	0	Α	8	0	0	0	С
Binary	1100	0000	1010	1000	0000	0000	0000	1100
Decimal	19	92	168		0		12	

IP PDU > *Destination Address* for the selected HTTP PDU

Field Name: Destination Address

<u>Purpose and Definition</u>: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.101

Hexadecimal	С	0	Α	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101
Decimal	19	92	16	58	()	1()1

IP PDU > *Options and Padding* for the selected HTTP PDU

Field Name: Options and Padding

<u>Purpose and Definition</u>: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type

Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Field Key: Not applicable

Data values: Not applicable

Data values in other bases: Not applicable

IP PDU > *Data* for the selected HTTP PDU

Field Name: Data

Purpose and Definition: The Data is a variable length field which contains the actual data that is being sent from one host to another. The data field may start with a Layer 4 header, which will give additional instructions to the application that will be receiving the data; alternately, it may be an ICMP header and not contain any user data at all.

Field Key: Not applicable

<u>Data values (hexadecimal)</u>: (TCP) 80 30 00 15 81 A5 16 6C 87 A3 53 5D 80 18 16 D0 11 F4 00 00 01 01 08 0A 1B 25 F3 A1 0b DD 73 58 (FTP) 50 41 53 53 20 66 31 61 32 6B 33 75 73 65 72 0D 0A

Data values in other bases:

Hexadecimal: (TCP) 0 x 80 30 00 15 81 A5 16 6C 87 A3 53 5D 80 18 16 D0 11 F4 00 00 01 01 08 0A 1B 25 F3 A1 0B DD 73 58 (FTP) 50 41 53 53 20 66 31 61 32 6B 33 75 73 65 72 0D 0A

ASCII: $(TCP) \uparrow 0 \odot \odot \uparrow \uparrow \odot \uparrow \uparrow S] \uparrow \odot \odot \uparrow \odot \uparrow \odot \odot \odot \odot \odot \odot \odot \% \uparrow \uparrow \odot \uparrow s X$ (FTP) P A S S S \odot f 1 a 2 k 3 u s e r \odot \odot

2.8.2 TCP PDU for the selected HTTP PDU

IP > TCP PDU > Source Port for the selected HTTP PDU

Field Name: Source Port

<u>Purpose and Definition:</u> This 16-bit number represents the name of the application that sent the data in the IP packet.

Field Key: Not applicable

Data value: www (80)

Hexadecimal	0	0	5	0
Binary	0000	0000	0101	0000
Decimal	()	8	0

IP > TCP PDU > *Destination Port* for the selected HTTP PDU

Field Name: Destination Port

Purpose and Definition:

This 16-bit number represents the name of the application that is to receive the data contained within the IP packet. This is one of the major differences between a Layer 3 and a Layer 4 header: the Layer 3 header contains the IP address of the computer that is to receive the IP packet; once that packet has been received, the port address in the Layer 4 header ensures that the data contained within that IP packet is passed to the correct application on that computer.

Field Key:

This key indicates assigned port number values:DecPort Numbers0Reserved

Iteber ved
Internet registered ("well-known") protocols
Reserved, to allow TCPv7-TCPv4 conversion
Dynamic assignment

Data value (decimal): 4255

Data values in other bases:

Hexadecimal	1	0	9	F		
Binary	0001	0000	1001	1111		
Decimal	4255					

Source: http://www.zvon.org/tmRFC/RFC1475/Output/chapter4.html

IP > TCP PDU > *Sequence Number* for the selected HTTP PDU

Field Name: Sequence Number

Purpose and Definition:

TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Field Key: Not applicable

Data value (decimal): 988014608

Hexadecimal	3	Α	Е	3	Е	8	1	0
Binary	0011	1010	1110	0011	1110	1000	0001	0000
Decimal	5	8	22	27	23	32	1	6

IP > TCP PDU > *Acknowledgement Number* for the selected HTTP PDU

Field Name: Acknowledgement Number

Purpose and Definition:

This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Field Key: Not applicable

Data value: 1398299764

Hexadecimal	5	3	5	8	5	С	7	4
Binary	0101	0011	0101	0111	0101	1010	0111	0100
Decimal	8	3	8	8	9	2	11	16

IP > TCP PDU > Header Length or Offset for the selected HTTP PDU

Field Name: Header Length or Offset

Purpose and Definition:

This is identical in concept to the header length in an IP packet, except this time it indicates the length of the TCP header.

Field Key: Not applicable

Data value (bytes): 32

Hexadecimal	8	0			
Binary	1000	0000			
Decimal	128				

IP > TCP PDU > *Control Flags* for the selected HTTP PDU

Field Name: Control Flags

Purpose and Definition:

Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key:

- Urgent (URG)
- Acknowledgement (ACK)
- Push (PSH)
- Reset (RST)
- Synchronize (SYN)
- Finish (FIN)

Data value (binary): 01 1000

Data values in other bases: Not applicable

IP > TCP PDU > Window Size for the selected HTTP PDU

Field Name: Window Size

Purpose and Definition:

Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key: Not applicable

Data value (decimal): 7504

Hexadecimal	1	D	5	0		
Binary	0001	1101	0101	0000		
Decimal	7504					

IP > TCP PDU > *Urgent Pointer* for the selected HTTP PDU

Field Name: Urgent Pointer

Purpose and Definition:

If the Urgent flag is set to on, this value indicates where the urgent data is located.

Information Key: Not applicable

Data value: Not applicable

Data values in other bases: Not applicable

IP > TCP PDU > *Checksum* for the selected HTTP PDU

Field Name: Checksum

Purpose and Definition:

Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Field Key: Not applicable

Data value (hexadecimal): F0 F6

Hexadecimal	F	0	F	6
Binary	1111	0000	1111	0110
Decimal	24	40	24	46

IP > TCP PDU > Options and Padding for the selected HTTP PDU

Field Name: Options and Padding

Purpose and Definition:

Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. Again, if an option does not fill up a 32-bit word, it will be filled in with padding bits.

Field Key: Not applicable

Data value (hexadecimal): 08 0A 39 22 DB 5B 06 2F 44 96

Hexadecimal	0	8	0	Α	3	9	2	2	D	В
Binary	0000	1000	0000	1010	0011	1001	0010	0010	1101	1011
Decimal	8	3	1	0	5	7	3	4	21	9
ASCII	()	()	Ģ)	ć	د		

Hexadecimal	5	В	0	6	2	F	4	4	9	6
Binary	0101	1011	0000	0110	0010	1111	0100	0100	1001	0110
Decimal	9	1	(6		7	6	8	15	50
ASCII		[(©		/		Lt.		

2.8.3 HTTP PDU for the selected HTTP PDU

IP > **TCP** > **HTTP PDU** > *Content Type* for the selected **HTTP PDU**

Field Name: Content Type

<u>Purpose and Definition</u>: The Content-Type entity-header field indicates the media type of the Entity-Body sent to the recipient.

Field Key: Not applicable

Data value (ASCII): text/html; charset=iso - 8859-1\r\n

Hexadecimal	4	3	6	F	6	Е	7	4	
Binary	0100	0011	0110	1111	0110	1110	0111	0100	
Decimal	6	7	1	11	1	110		116	
ASCII	(5	(С	1	n		t	
Hexadecimal	6	5	6	Е	7	4	2	D	
Binary	0110	0101	0110	1110	0111	0100	0010	1101	
Decimal	1(01	1	10	1	16	4	5	
ASCII]	Ξ	1	n		t	-	-	
Hexadecimal	5	4	7	9	7	0	6	5	
Binary	0101	0100	0111	1001	0111	0000	0110	0101	
Decimal	8	4	12	21	112		101		
ASCII	۲.	Г	у		р		e		
Hexadecimal	3	Α	2	0	7	4	6	5	
Binary	0110	1010	0010	0000	0111	0100	0110	0101	
Decimal	5	8	3	2	116		101		
ASCII						t	(5	
Hexadecimal	7	8	7	4	2	F	6	8	
Binary	0111	1000	0111	0100	0010	1111	0110	1000	
Decimal	12	20	1	16	4	.7	10)4	
ASCII	2	X		t		/	1	1	
Hexadecimal	7	4	6	D	6	С	3	В	
Binary	0111	0100	0110	1101	0110	1100	0011	1011	
Decimal	1	16	10	09	108		59		
ASCII	r	Г	r	n		1			

	-			-				
Hexadecimal	2	0	6	3	6	8	6	1
Binary	0010	0000	0110	0011	0110	1000	0110	0001
Decimal	3	2	9	9	104		97	
ASCII			с		1	1	6	ì
Hexadecimal	7	2	7	3	6	5	7	4
Binary	0111	0010	0111	0011	0110	0101	0111	0100
Decimal	1	14	11	15	10)1	11	16
ASCII]	r	5	5	(e	1	t
Hexadecimal	3	D	6	9	7	3	6	F
Binary	0011	1101	0110	1001	0111	0011	0110	1111
Decimal	6	1	105		11	115		1
ASCII	=	=	i		5	5	()
Hexadecimal	2	D	3	8	3	8	3	5
Binary	0010	1101	0011	1000	0011	1000	0011	0101
Decimal	4	5	5	6	5	6	5	3
ASCII		-	8	3	8	3	4	5
Hexadecimal	3	9	2	D	3	1	0	D
Binary	0011	1001	0010	1101	0011	0001	0000	1101
Decimal	5	7	4	5	49		13	
ASCII	(9	-		1		\r	

Hexadecimal	0	А
Binary	0000	1010
Decimal	1	0
ASCII	/1	n

IP > TCP > HTTP PDU > *Date* for the selected HTTP PDU

Field Name: Date

<u>Purpose and Definition</u>: This field contains the date and time on which the web page was accessed.

Field Key: Not applicable

Data value (ASCII): Date: Tue, 03 Feb 2004 23:08:10 GMT\r\n

Hexadecimal	4	6	6	1	7	4	6	5
Binary	0110	0110	0110	0001	0111	0100	0110	0101
Decimal	7	0	9	7	1	16	1()1
ASCII	Ι)		a		t		e
Hexadecimal	3	Α	2	0	5	4	7	5
Binary	0010	1010	0010	0000	0101	0100	0111	0101
Decimal	5	8	3	2	8	4	11	17
ASCII		:				Г	ι	ı
Havadaaimal	6	5	2	C	2	0	2	0
Diporty	0110	0101	2	1100	2	0000	0011	0000
Dillary Decimal	0110		0010 1100		32		/18	
Decimal	10	01	44		3	Z	4	8
ASCII	(e		2			()
		1	r	r	r	1	r	r
Hexadecimal	3	3	2	0	4	6	6	5
Binary	0011	0011	0010	0000	0100	0110	0110	0101
Decimal								
ASCII		3]	F	(2
Hexadecimal	6	2	2	0	3	2	3	0
Binary	0110	0010	0010	0000	0011	0010	0011	0000
Decimal	9	8	3	2	5	0	4	8
ASCII	1	b				2	()
Hexadecimal	3	0	3	4	3	2	3	3
Binary	0011	0000	0011	0100	0011	0010	0011	0011
Decimal	4	-8	5	2	5	0	51	
ASCII	(0	4	4		2	3	

Hexadecimal	3	А	3	0	3	8	3	А
Binary	0011	1010	0011	0000	0011	1000	0011	1010
Decimal	5	8	4	8	5	6	58	
ASCII			()	3	3	:	
Hexadecimal	3	1	3	0	2	0	4	7
Binary	0011	0001	0011	0000	0010	0000	0100	0111
Decimal	4	9	48		3	2	7	1
ASCII		1	0				G	
noen		L		, ,			-	
noen	-	L		, 				
Aben		L		, 				
Hexadecimal	4	D	5	4	0	D	0	A
Hexadecimal Binary	4 0100	D 1101	5 0101	4 0100	00000	D 1101	0 0000	A 1010

Т

 \mathbf{r}

\n

ASCII

М

IP > **TCP** > **HTTP PDU** > *HTTP* for the selected HTTP **PDU**

Field Name: HTTP

<u>Purpose and Definition</u>: This field displays the category of the page that is being displayed.

Field Key: Not applicable

Data value (ASCII): HTTP/1.1 404 Not Found\r\n

Hexadecimal	4	8	5	4	5	4	5	0
Binary	0100	1000	0101	0100	0101	0100	0101	0000
Decimal	7	2	8	4	8	84		0
ASCII	I	H	Т		Т		Р	
Hexadecimal	2	F	3	1	2	Е	3	1
Binary	0010	1111	0011	0001	0010	1110	0011	0001
Decimal	4	7	4	9	4	6	4	9
ASCII		/		1		•]	
Hexadecimal	2	0	3	4	3	0	3	4
Binary	0010	0000	0011	0100	0011	0000	0011	0100
Decimal	3	2	52		48		52	
ASCII			4	4		0		1
Hexadecimal	2	0	4	Е	6	F	7	4
Binary	0010	0000	0100	1110	0110	1111	0111	0100
Decimal	3	2	7	8	111		116	
ASCII			1	N	0		1	t
Hexadecimal	2	0	4	6	6	F	7	5
Binary	0010	0000	0100	0110	0110	1111	0111	0101
Decimal	3	2	7	0	1	11	11	17
ASCII			l		(0	ι	1
		r	r	r	r	1	1	
Hexadecimal	6	Е	6	4	0	D	0	А
Binary	0110	1110	0110	0100	0000	1101	0000	1010
Decimal	1	10	100		13		10	
ASCII	1	1	(1	\	r	\n	

IP > **TCP** > **HTTP PDU** > *Server* for the selected **HTTP PDU**

Field Name: Server

<u>**Purpose and Definition:**</u> The Server response-header field contains information about the software used by the origin server to handle the request.

Field Key: Not applicable

Data value (ASCII): Server: Apache/1.3.24 (Unix) PHP/4.2.1\r\n

Hexadecimal	5	3	6	5	7	2	7	6
Binary	0101	0011	0110	0101	0111	0010	0111	0110
Decimal	8	3	1()1	1	4	118	
ASCII		<u> </u>	I	7 7	r		V	
noen		<i>,</i>		_		L		
Hexadecimal	6	5	7	2	3	Α	2	0
Binary	0110	0101	0111	0010	0011	1010	0010	0000
Decimal	1()1	11	14	5	8	3	2
ASCII	(e	I	ξ				
Hexadecimal	4	1	7	0	6	1	6	3
Binary	0110	0001	0111	0000	0110	0001	0110	0011
Decimal	6	5	112		97		99	
ASCII	A	1	Р		ä	а		2
Hexadecimal	6	8	6	5	2	F	3	1
Binary	0110	1000	0110	0101	0010	1111	0011	0001
Decimal	10)4	10)1	4	7	49	
ASCII	1	1	I	Ŧ	/]	
Hexadecimal	2	Е	3	3	2	Е	3	2
Binary	0010	1110	0011	0011	0010	1110	0011	0010
Decimal	4	6	5	1	4	6	5	0
ASCII				3			2	2
Hexadecimal	3	4	2	0	2	8	5	5
Binary	0011	0100	0010	0000	0010	1000	0101	0101
Decimal	5	2	3	2	40		85	
ASCII	2	1				(U	

Hexadecimal	6	Е	6	9	7	8	2	9	
Binary	0110	1110	0110	1001	0111	1000	0010	1001	
Decimal	110		10	105		120		41	
ASCII	n		-	i	2	X)	
Hexadecimal	2	0	5	0	4	8	5	0	
Binary	0010	0000	0101	0000	0100	1000	0101	0000	
Decimal	3	2	8	0	7	2	80		
ASCII			I)	I	Н		Р	
		-					-		
Hexadecimal	2	5	3	4	2	E	3	2	
Binary	0010	0101	0011	0100	0010	1110	0011	0010	
Decimal	3	7	5	2	4	6	5	0	
ASCII	,	/	4	1			4	2	
Hexadecimal	2	Е	3	1	0	D	0	А	
Binary	0010	1110	0011	0001	0000	1101	0000	1010	
Decimal	4	6	4	9	1	3	10		

1

\r

\n

ASCII

.

IP > TCP > HTTP PDU > *Data* for the selected HTTP PDU

Field Name: Data

<u>Purpose and Definition:</u> This field stores the information that is actually contained in the HTTP Protocol.

Field Key: Not applicable

Data value (ASCII): <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">\n <HTML><HEAD>\n <TITLE>404 Not Found</TITLE>\n </HEAD><BODY>\n <H1>Not Found</H1>\n The requested URL /~csis410/2003/bluetech/Requirements Speicfication Document Final-files/image002.gif was not found on this server.\n <HR>\n <ADDRESS>Apache/1.3.24 Server at ares.cs.siena.edu Port 80</ADDRESS>\n </BODY></HTML>\n

Hexadecimal	3	С	2	1	4	4	4	5	
Binary	0011	1100	0010	0001	0100	0100	0100	0101	
Decimal	6	0	3	3		68		69	
ASCII	~	<		!		D		0	
Hexadecimal	4	3	5	4	5	9	5	0	
Binary	0100	0011	0101	0100	0101	1001	0101	0000	
Decimal	6	7	8	34		89		80	
ASCII	(C	r	Г		Y		Р	
Hexadecimal	4	5	2	0	4	8	5	4	
Binary	0100	0101	0010	0000	0100	1000	0101	0100	
Decimal	6	9	3	32		72		84	
ASCII	l	E			Н			Т	
Hexadecimal	4	D	4	С	2	0	5	0	
Binary	0100	1101	0110	1100	0010	0000	0101	0000	
Decimal	7	7	7	76		32		80	
ASCII	Ν	Λ]	L				Р	
Hexadecimal	5	5	4	2	4	С	4	9	
Binary	0101	0101	0100	0010	0100	1100	0100	1001	
Decimal	8	35	6	66	76		73		
ASCII		U		B		L		Ι	

Hexadecimal	4	3	2	0	2	2	2	D	
Binary	0100	0011	0010	0000	0010	0010	0010	1101	
Decimal		57		32		34		45	
ASCII		С				"		-	
Hexadecimal	2	F	2	F	4	9	4	5	
Binary	0010	1111	0010	1111	0100	1001	0100	0101	
Decimal	4	7		47		73		69	
ASCII		/		/		Ι		E	
Hexadecimal	5	4	4	6	2	F	2	F	
Binary	0101	0100	0100	0110	0010	1111	0010	1111	
Decimal	8	34		70		47		47	
ASCII	r	Г		F		/		/	
					•				
Hexadecimal	4	4	5	4	4	4	2	0	
Binary	0100	0100	0101	0100	0100	0100	0010	0000	
Decimal	6	58		84		68	32		
ASCII]	D		Т	D				
Hexadecimal	4	8	5	4	4	D	4	С	
Binary	0100	1000	0101	0100	0100	1101	0100	1100	
Decimal	7	'2		84		77		76	
ASCII]	H		Т		М		L	
					-				
Hexadecimal	2	0	3	2	2	E	3	0	
Binary	0010	0000	0011	0010	0010	1110	0011	0000	
Decimal	3	2		50		46		48	
ASCII				2				0	
			1						
Hexadecimal	2	F	2	F	4	5	4	E	
Binary	0010	1111	0010	1111	0100	0101	0100	1110	
Decimal	4	47		47		69		78	
ASCII		/		/		E		N	
	-							~	
Hexadecimal	2	2	3	E	0	A	3	C	
Binary	0010	0010	0011	1110	0000	1010	0011	1100	
Decimal	-	34		62		10	60		
ASCII		"		>		\n		<	
				-				~	
Hexadecimal	4	8	5	4	4	<u>D</u>	4	<u> </u>	
Binary	0100	1000	0101	0100	0100	1101	0100	1100	
Decimal	7	2		84		77		76	
ASCII]	H		Т		М		L	

i		1			1		1		
Hexadecimal	3	E	3	С	4	8	4	5	
Binary	0011	1110	0011	1100	0100	1000	0100	0101	
Decimal	6	2	6	0	7	2	69		
ASCII		>	<	<	H	ł	Е		
Hexadecimal	4	1	4	4	3	E	0	А	
Binary	0100	0001	0100	0100	0011	1110	0000	1010	
Decimal	6	5	6	8	6	2	1	0	
ASCII	I	4	Ι)	>	>	/:	n	
Hexadecimal	3	С	5	4	4	9	5	4	
Binary	0011	1100	0101	0100	0100	1001	0101	0100	
Decimal	6	0	8	4	7	3	8	4	
ASCII	<	<]	Γ]	Ι]	Γ	
Hexadecimal	4	С	4	5	3	Е	3	4	
Binary	0100	1100	0100	0101	0011	1110	0011	0100	
Decimal	7	6	6	9	6	2	5	2	
ASCII]		I	Ŧ	>		4		
Hexadecimal	3	0	3	4	2	0	4	Е	
Binary	0011	0000	0011	0100	0010	0000	0100	1110	
Decimal	4	8	5	2	3	2	78		
ASCII	()	Z	1			1	J	
Hexadecimal	6	F	7	4	2	0	4	6	
Binary	0110	1111	0111	0100	0010	0000	0100	0110	
Decimal	1	11	11	16	32		70		
ASCII	(С	1	t			I	[·	
Hexadecimal	6	F	7	5	6	E	6	4	
Binary	0110	1111	0111	0101	0110	1110	0110	0100	
Decimal	1	11	11	17	11	10	10)0	
ASCII	(0	ι	l	1	1		1	
Hexadecimal	3	С	2	F	5	4	4	9	
Binary	0011	1100	0010	1111	0101	0100	0100	1001	
Decimal	6	0	4	7	8	4	7	3	
ASCII	<	<	/	/]	Г	Ι		
Hexadecimal	5	4	4	С	4	5	3	Е	
Binary	0101	0100	0100	1100	0100	0101	0011	1110	
Decimal	0	1	7	6	6	9	6	2	
	0	4	/	0	0	/	0	4	

Hexadecimal	0	А	3	С	2	F	4	8
Binary	0000	1010	0011	1100	0010	1111	0100	1000
Decimal	1	0	6	0		47		2
ASCII	\	n	<	<	/		I	ł
		-		-				
Hexadecimal	4	5	4	1	4	4	3	E
Binary	0100	0101	0100	0001	0100	0100	0011	1110
Decimal	6	9	6	5		68	6	2
ASCII]	E	I	4		D	2	>
		-		-				
Hexadecimal	3	С	4	2	4	F	4	4
Binary	0011	1100	0100	0010	0100	1111	0100	0100
Decimal	6	0	6	6	,	79	6	8
ASCII	~	<	I	3		0	I)
		-		-				
Hexadecimal	5	9	3	E	0	А	3	С
Binary	0101	1001	0011	1110	0000	1010	0011	1100
Decimal	8	9	6	2		10	60	
ASCII		Y	>	>	\n		<	
Hexadecimal	4	8	3	1	3	E	4	E
Binary	0100	1000	0011	0001	0011	1110	0100	1110
Decimal	7	2	4	.9		52	78	
ASCII]	H		1		>	1	I
		1	1	1	1	T	1	1
Hexadecimal	6	F	7	4	2	0	4	6
Binary	0110	1111	0111	0100	0010	0000	0100	0110
Decimal	1	11	1	16	32		70	
ASCII	(0		t]	7
		1	1	1				1
Hexadecimal	6	F	7	5	6	E	6	4
Binary	0100	1111	0111	0101	0110	1110	0110	0100
Decimal	1	11	1	17	1	10	10	00
ASCII	(0	1	l		n		1
			1		T	1	1	1
Hexadecimal	3	C	2	F	4	8	3	1
Binary	0011	1100	0010	1111	0100	1000	0011	0001
Decimal	6	0	4	.7	,	72	4	.9
ASCII	~	<		/		Н	1	
		1					1	
Hexadecimal	3	E	0	A	5	4	6	8
Binary								
Dillary	0011	1110	0000	1010	0101	0100	0110	1000
Decimal	0011	1110 2	0000	1010 0	0101	0100 84	0110	1000 04

Hexadecimal	6	5	2	0	7	2	6	5
Binary	0110	0101	0010	0000	0111	0010	0110	0101
Decimal	1(01	3	2	1	14	101	
ASCII	(e			1	r	e	
			L					
Hexadecimal	7	1	7	5	6	5	7	3
Binary	0111	0001	0111	0101	0110	0101	0111	0011
Decimal	1	13	11	17	10	01	11	5
ASCII	(q	ι	l		e	5	5
		•	L					
Hexadecimal	7	4	6	5	6	4	2	0
Binary	0111	0100	0110	0101	0110	0100	0010	0000
Decimal	11	16	1()1	10	00	3	2
ASCII	1	t	6	e		1		
							•	
Hexadecimal	5	5	5	2	4	С	2	0
Binary	0101	0101	0101	0010	0100	1100	0010	0000
Decimal	8	5	8	2	7	6	3	2
ASCII	J	J	ŀ	ξ	L			
			L					
Hexadecimal	2	F	7	Е	6	3	7	3
Binary	0010	1111	0111	1110	0110	0011	0111	0011
Decimal	4	7	12	26	9	9	115	
ASCII	,	/	~	~	(С	5	5
Hexadecimal	6	9	7	3	3	4	3	1
Binary	0110	1001	0111	0011	0011	0100	0011	0001
Decimal	1(05	11	15	52		4	9
ASCII	-	i		5	4	4		
Hexadecimal	3	0	2	F	3	2	3	0
Binary	0011	0000	0010	1111	0011	0010	0011	0000
Decimal	4	-8	4	7	5	0	4	8
ASCII	(0	/	/		2	()
		1	r	r	1	1	1	
Hexadecimal	3	0	3	3	2	F	6	2
Binary	0011	0000	0011	0011	0010	1111	0110	0010
Decimal	4	-8	5	1	4	7	9	8
ASCII	(0		3		/	b	
							1	
Hexadecimal	6	C	7	5	6	5	7	4
Binary	0110	1100	0111	0101	0110	0101	0111	0100
Decimal	10	08	11	17	10	01	11	16
		1			I .	h	•	-

	-							
Hexadecimal	6	5	6	3	6	8	2	F
Binary	0110	0101	0110	0011	0110	1000	0010	1111
Decimal	10	01	9	9	104		47	
ASCII	(e		c		h		/
								-
Hexadecimal	5	2	6	5	7	1	7	5
Binary	0101	0010	0110	0101	0111	0001	0111	0101
Decimal	8	32	1	01	1	13	1	17
ASCII]	R		e		q	1	u
Hexadecimal	6	9	7	2	6	5	6	D
Binary	0110	1001	0111	0010	0110	0101	0110	1101
Decimal	10	05	1	14	1	01	10	09
ASCII		i		r		e	r	n
Hexadecimal	6	5	6	Е	7	4	7	3
Binary	0110	0101	0110	1110	0111	0100	0111	0011
Decimal	10	01	1	10	1	16	1	15
ASCII	(e	1	n	t		S	
Hexadecimal	2	0	5	3	7	0	6	5
Binary	0010	0000	0101	0011	0111	0000	0110	0101
Decimal	2	32	8	33	11	2	101	
ASCII			5	S	Į)	e	e
Hexadecimal	6	3	6	9	6	6	6	9
Binary	0110	0011	0110	1001	0110	0110	0110	1001
Decimal	9	19	1	05	102		105	
ASCII	(c		i		f		i
Hexadecimal	6	3	6	1	7	4	6	9
Binary	0110	0011	0110	0001	0111	0100	0110	1001
Decimal	9	9	9	7	11	16	10)5
ASCII	C	;	а	l	1	t	1	
Hexadecimal	6	F	6	Е	2	0	4	4
Binary	0110	1111	0110	1110	0010	0000	0100	0100
Decimal	1	11	1	10		32	6	8
ASCII	(0]	n			Ι)
	•		•				·	
Hexadecimal	6	F	6	3	7	5	6	D
Binary	0110	1111	0110	0011	0111	0101	0110	1101
Decimal	1	11	9	9	1	17	10	09
			1		11/ 11		m	

Hexadecimal	6	5	6	Е	7	4	2	0	
Binary	0110	0101	0110	1110	0111	0100	0010	0000	
Decimal	10)1	11	0	1	16	3	2	
ASCII	(9	1	1		t			
Hexadecimal	4	6	6	9	6	Е	6	1	
Binary	0100	0110	0110	1001	0110	1110	0110	0001	
Decimal	7	0	10)5	1	10	9	7	
ASCII	l	[T.		i	1	1	8	ı	
Hexadecimal	6	С	5	F	6	6	6	9	
Binary	0110	1100	0101	1111	0110	0110	0110	1001	
Decimal	1()8	9	5	10	02	1()5	
ASCII		l		-		f	j	L	
Hexadecimal	6	С	6	5	7	3	2	F	
Binary	0110	1100	0110	0101	0111	0011	0010	1111	
Decimal	6	3	10)1	1	15	4	7	
ASCII		l	6	9	S		/	/	
Hexadecimal	6	9	6	D	6	1	6	7	
Binary	0110	1001	0110	1101	0110	0001	0110	0111	
Decimal	10)5	10)9	9	7	103		
ASCII		i	n	n	6	a	Ę	3	
			1		1	1	r		
Hexadecimal	6	5	3	0	3	0	3	2	
Binary	0110	0101	0011	0000	0011	0000	0011	0010	
Decimal	10)1	48		48		50		
ASCII	e		()	()	2	2	
			1		1	1	Γ		
Hexadecimal	2	E	6	7	6	9	6	6	
Binary	0010	1110	0110	0111	0110	1001	0110	0110	
Decimal	4	6	10)3	10	<u>)5</u>	10)2	
ASCII			E E E E E E E E E E E E E E E E E E E	5		1	1		
TT 1 · 1	2	0	7	7		1	7	2	
Hexadecimal	2	0	/	/	0	l	/	3	
Binary	0001	0000	0111	0111	0110	0001	0111	0011	
Decimal	3	2	1.	19	97		115		
ASCII			V	V	8	a		S	
	2	0	ſ	г	6	Г	7	Α	
Hexadecimal	2	0000	0110	E	0		/	4	
Binary	0010		0110	1110	0110			0100	
Decimal	3	2		10		11		0	
ASCIL			1 1	1	()	1 1	-	

Hexadecimal	2	0	6	6	6	F	7	5	
Binary	0010	0000	0110	0110	0110	1111	0111	0101	
Decimal	3	2	1()2	11	11	11	7	
ASCII]	f	()	u		
Hexadecimal	6	Е	6	4	2	0	6	F	
Binary	0110	1110	0110	0100	0010	0000	0110	1111	
Decimal	1	10	1(00	3	2	11	1	
ASCII	1	1	(1			()	
Hexadecimal	6	Е	2	0	7	4	6	8	
Binary	0110	1110	0010	0000	0111	0100	0110	1000	
Decimal	1	10	3	2	11	16	10)4	
ASCII	1	1			1	t	ł	1	
Hexadecimal	6	9	7	3	2	0	7	3	
Binary	0110	1001	0111	0011	0010	0000	0111	0011	
Decimal	1()5	11	15	3	2	11	5	
ASCII	-	i	5	5			S		
Hexadecimal	6	5	7	2	7	6	6	5	
Binary	0110	0101	0111	0010	0111	0110	0110	0101	
Decimal	1()1	11	14	11	18	101		
ASCII	(e	1	r	, v	V	6	2	
Hexadecimal	7	2	2	E	3	С	5	0	
Binary	0111	0010	0010	1110	0011	1100	0101	0000	
Decimal	1	14	4	6	60		8	0	
ASCII	r				<	<	I)	
Hexadecimal	3	E	0	Α	3	С	4	8	
Binary	0011	1110	0000	1010	0011	1100	0100	1000	
Decimal									
ASCII	>	>	/:	n	<	<	H	ł	
Hexadecimal	5	2	3	E	0	4	3	С	
Binary	0101	0010	0011	1110	0000	0100	0011	1100	
Decimal	8	2	6	2	1	0	6	0	
ASCII	I	2	>	>	\:	n	<	<	
Hexadecimal	4	1	4	4	4	4	5	2	
Binary									
Dinary	0100	0001	0100	0100	0100	0100	0101	0010	
Decimal	0100	0001 5	0100	0100 8	0100	0100 8	0101	0010 2	

Hexadecimal	4	5	5	3	5	3	3	Е	
Binary	0100	0101	0101	0011	0101	0011	0011	1110	
Decimal	6	9	8	3	8	3	6	2	
ASCII]	E	S.	8	, in the second s	5	>		
Hexadecimal	4	1	7	0	6	1	6	3	
Binary	0100	0001	0111	0000	0110	0001	0110	0011	
Decimal	6	5	1	12	9	7	9	9	
ASCII	I	4	1)	6	a		2	
Hexadecimal	6	8	6	5	2	F	3	1	
Binary	0110	1000	0110	0101	0010	1111	0011	0001	
Decimal	10	04	10)1	4	7	4	9	
ASCII	1	1	(e		/	1	[
Hexadecimal	2	Е	3	3	2	Е	3	2	
Binary	0010	1110	0011	0011	0010	1110	0011	0010	
Decimal	4	6	5	1	4	6	5	0	
ASCII				3			2		
					•				
Hexadecimal	3	4	2	0	5	3	6	5	
Binary	0011	0100	0010	0000	0101	0011	0110	0101	
Decimal	5	2	3	2	8	3	101		
ASCII	2	4			C L	5	(e	
Hexadecimal	7	2	7	6	6	5	7	2	
Binary	0111	0010	0111	0110	0110	0101	0111	0010	
Decimal									
ASCII	r		v	V	(e	1	ſ	
Hexadecimal	2	0	6	1	7	4	2	0	
Binary	0010	0000	0110	0001	0111	0100	0010	0000	
Decimal	3	2	9	7	1	16	32	23	
ASCII			6	a		t			
					-	-			
Hexadecimal	3	1	7	2	6	5	7	3	
Binary	0011	0001	0111	0010	0110	0101	0111	0011	
Decimal	9	7	11	14	10	01	11	15	
ASCII		a	1	r	e		s		
Hexadecimal	2	Е	6	3	7	3	2	Е	
Binary	0010	1110	0110	0011	0111	0011	0010	1110	
Decimal	4	6	9	9	1	15	4	6	

Hexadecimal	7	3	6	9	6	5	6	Е	
Binary	0111	0011	0110	1001	0110	0101	0110	1110	
Decimal	1	15	10)5	10	01	11	0	
ASCII		S		i		e	n		
Hexadecimal	6	1	2	E	6	5	6	4	
Binary	0110	0001	0010	1110	0110	0101	0110	0100	
Decimal	9	7	4	6	10	01	1()0	
ASCII	i	a		•		e	(1	
Hexadecimal	7	5	2	0	5	0	6	F	
Binary	0111	0101	0010	0000	0101	0000	0110	1111	
Decimal	1	17	3	2	8	0	11	1	
ASCII	1	ı]	p	()	
		1	1	r	1	1	r		
Hexadecimal	7	2	7	4	2	0	3	8	
Binary	0111	0010	0111	0100	0010	0000	0011	1000	
Decimal	1	14	11	16	3	2	56		
ASCII	1	r	1	t			8		
		I	I		T	I			
Hexadecimal	3	0	3	С	2	F	4	1	
Binary	0011	0000	0010	1100	0010	1111	0100	0001	
Decimal	4	.8	6	0	4	7	65		
ASCII	()	<	<		/	A	1	
	[1	1			1			
Hexadecimal	4	4	4	4	5	2	4	5	
Binary	0100	0100	0100	0100	0101	0010	0100	0101	
Decimal	6	8	6	8	8	2	69		
ASCII	I)	Ι)	ŀ	2	ŀ	3	
** 1 • 1	-		-	-		-			
Hexadecimal	5	3	5	3	3	E	0	A	
Binary	0101	0011	0101	0011	0011	1110	0000	1010	
Decimal	8	3	8	3	6	2	1	0	
ASCII		5		5		>	(1	n	
II	2	C	2	Б	4	2	4	Б	
Hexadecimal	3	<u> </u>	2	F	4	2	4	F 1111	
Binary	0011	1100	0010	7	0100	0010	0100	1111	
Decimal	6	0	4	/	6	0	79		
ASCII	<		,	/		5	0		
Have de sime 1	4	1	5	0	2	Б	2	C	
Hexadecimal	4	4) 0101	9	<u> </u>	E	<u> </u>	1100	
Binary Desire 1	0100		0101	0	0011	2	0011	1100	
	0 T	0	8	<u>ז</u>	0	~	0	-	
		-							
Hexadecimal	2	F	4	8	5	4	4	D	
-------------	------	------	------	------	------	------	------	------	
Binary	0010	1111	0100	1000	0101	0100	0100	1101	
Decimal	4	7	7	2	8	4	7	7	
ASCII		/	H	ł		Γ	N	1	

Hexadecimal	4	С	3	Е	0	Α
Binary	0100	1100	0011	1110	0000	1010
Decimal	7	6	6	2	1	0
ASCII	L		>		\	n

2.9 User Commands – SMTP (AKA "Clickable Buttons")

IP PDU

IP Version Internet Header Length Type of Service Total Length of Ethernet Frame Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address Options Data

TCP PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Lengths Reserved Window Size TCP Checksum Urgent Pointer Options Data

SMTP PDU

Source Port Number Destination Port Number Sequence Number Acknowledgement Number Header Length Reserved Window Size SMTP Checksum Urgent Pointer Options Data

2.9.1 IP PDU for the selected SMTP PDU

IP PDU > *IP Version* for the selected SMTP PDU

Field Name: IP Version

<u>Purpose and Definition</u>: Version is a 4-bit field that indicates the format of the internet header.

Data value (decimal): 4

Hexadecimal	4
Binary	0100
Decimal	4

IP PDU > *Internet Header Length* for the selected **SMTP PDU**

Field Name: Internet Header Length

Purpose and Definition: The IHL field is a 4-bit field indicating the length of the internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Field Key: Not applicable

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Hexadecimal	0	5	
Binary	0000	0101	
Decimal	5		

IP PDU > *Type of Service* for the selected SMTP PDU

Field Name: Type of Service

<u>Purpose and Definition:</u> Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Field Key: The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

= Low Delay

= High Throughput= High Reliability

Λ	1	2	٦	4	5	6	7
Prece	edence		Л	Т	R	0	Λ

Bits 0-2: Precedence

Bit 3: (D)	0 = Normal Delay	1
Bit 4: (T)	0 = Normal Throughput	1
Bit 5: (R)	0 = Normal Reliability	1

Precedence:

111 = Network Control	011 = Flash
110 = Internetwork Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Overrided	000 = Routine

Data value (hexadecimal): 00

Hexadecimal	0	0
Binary	0000	0000
Decimal	0	0

IP PDU > *Total Length of Ethernet Frame* for the selected SMTP PDU

Field Name: Total Length of Ethernet Frame

<u>Purpose and Definition</u>: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Field Key: Not applicable

Data values (hexadecimal): 02 12

Hexadecimal	0	2	1	2	
Binary	0000	0010	0001	0010	
Decimal	2		18		
ASCII	©		©		

IP PDU > *Identification* for the selected SMTP PDU

Field Name: Identification

<u>Purpose and Definition:</u> Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a datagram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the datagram or any fragment could be alive in the internet.

Field Key: Not applicable

Data value (hexadecimal): 61 28

Hexadecimal	6	1	2	8
Binary	0110	0001	0010	1000

IP PDU > *Flags* for the selected SMTP PDU

Field Name: Flags

Purpose and Definition: Flags is a 3-bit field that indicates directions for fragmentation.

Field Key:

Bit 0: reserved, must be 0					
Bit 1: (DF)	0 = May Fragment				
Bit 2: (MF)	0 = Last Fragment				

1 = Don't Fragment 1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

IP PDU > *Fragment Offset* for the selected SMTP PDU

Field Name: Fragment Offset

Purpose and Definition: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Field Key: Not applicable

Data value (decimal): 0

Data values in other bases: Binary: 0000 0000 0000

IP PDU > *Time to Live* for the selected **SMTP PDU**

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the internet. This field is decreased at each point that the internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 64

Hexadecimal	4	0
Binary	0100	0000
Decimal	6	4

IP PDU > *Protocol* for the selected SMTP PDU

Field Name: Protocol

<u>Purpose and Definition:</u> Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the internet diagram.

Field Key: Dec Hex Dec Protocol Hex Protocol 0 00 Reserved 22 16 Multiplexing **ICMP** 23 17 DCN 1 01 2 02 24 TAC Monitoring Unassigned 18 3 03 Gateway-to-Gateway 25-76 19-4C Unassigned 4 CMCC Gateway Monitoring Message 77 4D Any local network 04 5 05 100 SATNET and ST 64 Backroom EXPAK 6 06 TCP 101 65 MIT Subnet Support 7 Unassigned 07 UCL 102-104 66-68 SATNET 10 0A Unassigned 105 69 Monitoring 106 Unassigned 11 0BSecure 6A 12 0C**BBN RCC Monitoring** 107 6B Internet Packet Core Utility 13 0D Unassigned NVP 110-113 6E-71 14 0E PUP **Backroom SATNET** 114 72 Monitoring 15 0F Pluribus 115 73 Unassigned **WIDEBAND** 16 10 Telnet 116 74 Monitoring **XNET** 75 **WIDEBAND** 17 11 117 EXPAK 20 14 Chaos 120-376 78-0178 Unassigned 21 0179 Reserved 15 User Datagram 377

Data value (hexadecimal): 06

Data values in other bases:

Hexadecimal	0	6
Binary	0000	0110
Decimal	(6

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected **SMTP PDU**

Field Name: Header Checksum

Purpose and Definition: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Field Key: Not applicable

Data value (hexadecimal): F1 F3

Hexadecimal	F	1	F	3
Binary	1111	0001	1111	0011

IP PDU > *Source Address* for the selected SMTP PDU

Field Name: Source Address

<u>Purpose and Definition</u>: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.101

Hexadecimal	С	0	Α	8	0	1	0	1
Binary	1100	0000	1010	1000	0000	0001	0010	0001
Decimal	19	92	10	58		10)1	

IP PDU > *Destination Address* for the selected **SMTP PDU**

Field Name: Destination Address

<u>Purpose and Definition</u>: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Field Key: Not applicable

Data value (decimal): 192.168.100.20

Hexadecimal	С	0	Α	8	0	0	6	5
Binary	1100	0000	1010	1000	0000	0000	0110	0101
Decimal	19	2 1		58	10	00	2	0

IP PDU > *Options and Padding* for the selected SMTP PDU

Field Name: Options and Padding

<u>Purpose and Definition</u>: The options may or may not appear in Ethernet packets. They must be implemented by all IP modules (host and gateways). What is optional is their transmission in any particular packet, not their implementation.

The option field is variable in length. There may be zero or more options. There are two cases for the format of an option.

Case 1: A single octet of option type

Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

Field Key: Not applicable

Data values: Not applicable

Data values in other bases: Not applicable

IP PDU > *Data* for the selected **SMTP PDU**

Field Name: Data

<u>Purpose and Definition:</u> The Data is a variable length field which contains the actual data that is being sent from one host to another. The data field may start with a Layer 4 header, which will give additional instructions to the application that will be receiving the data; alternately, it may be an ICMP header and not contain any user data at all.

Field Key: Not applicable

Data values (hexadecimal) : (TCP) 0D 0A 2D 2D 2D 31 34 36 33 37 38 36 32 34 30 2D 37 32 33 37 38 33 33 32 38 2D 31 30 36 37 36 33 34 33 35 30 3D 3A 32 36 36 30 36 0D 0A 43 6F 6E 74 2D 54 79 70 65 3A 20 54 45 58 54 2F 70 6C 61 69 6E 3B 20 6E 61 6D 65 3D 22 6D 69 6d 65 74 65 73 74 2E 74 78 74 22 0D 0A 43 6F 6E 74 65 6E 74 2D 54 72 61 6E 73 66 65 72 2D 45 6E 63 6F 64 69 6E 67 3A 20 42 41 53 45 36 34 0D 0A 43 6F 6E 74 65 6E 74 2D 49 44 3A 20 3C 50 69 6E 65 2E 4C 4E 58 2E 34 2E 32 31 2E 32 31 2E 30 33 31 31 36 30 35 35 30 30 2E 32 36 36 30 36 40 63 62 31 31 38 6B 73 2E 63 73 2E 73 69 65 6E 61 2E 65 64 75 3E 0D 0A 43 6F 6E 74 65 6E 74 2D 44 65 73 63 72 69 70 74 69 6F 6E 3A 20 0D 0A 43 6F 6E 74 65 6E 74 2D 44 69 73 70 6F 73 69 74 69 6F 6E 3A 20 61 74 74 61 63 68 6D 65 6E 74 3B 20 66 69 6C 65 6E 61 6D 65 3D 22 6D 69 6D 65 74 65 73 74 2E 74 78 74 22 0D 0A 0D 0A 56 47 68 70 63 79 42 70 63 79 42 30 61 47 55 67 62 57 56 7A 63 32 46 6E 5A 53 42 30 61 47 46 30 49 48 64 70 62 47 77 67 59 57 78 73 62 33 63 67 64 58 4D 67 64 47 38 67 5A 47 6C 7A 0D 0A 63 47 78 68 65 53 42 33 61 58 52 6F 49 45 56 30 61 47 56 79 5A 57 46 73 49 41 30 4B 59 53 42 4E 53 55 31 46 49 47 46 30 64 47 46 6A 61 47 31 6C 62 6E 51 57 61 57 35 7A 61 57 52 6C 0D 0A 49 47 46 75 49 46 4E 4E 56 46 41 67 5A 6E 4A 68 62 57 55 75 44 51 6F 3D 0D 0A 2D 2D 2D 31 34 36 33 37 38 36 32 34 30 2D 37 32 33 37 38 33 33 32 38 2D 31 30 36 37 36 33 34 33 35 30 3D 3A 32 36 36 30 36 2D 2D 0D 0A 2E 0D 0A

2.9.2 TCP PDU for the selected SMTP PDU

IP > TCP PDU > Source Port for the selected **SMTP PDU**

Field Name: Source Port

<u>Purpose and Definition:</u> This 16-bit number represents the name of the application that sent the data in the IP packet.

Field Key: Not applicable

Data value (decimal): 3651

Hexadecimal	0	D	Е	9
Binary	0000	1101	1110	1001
Decimal	1	3	23	33
ASCII	/1	n		

IP > TCP PDU > *Destination Port* for the selected **SMTP PDU**

Field Name: Destination Port

Purpose and Definition:

This 16-bit number represents the name of the application that is to receive the data contained within the IP packet. This is one of the major differences between a Layer 3 and a Layer 4 header: the Layer 3 header contains the IP address of the computer that is to receive the IP packet; once that packet has been received, the port address in the Layer 4 header ensures that the data contained within that IP packet is passed to the correct application on that computer.

Field Key:

This key indicates	assigned port number values:
Dec	Port Numbers
0	Reserved
1-32767	Internet registered ("well-known") protocols
32768-98303	Reserved, to allow TCPv7-TCPv4 conversion

98304 & up Dynamic assignment

Data value (decimal): 25 (indicates SMTP)

Data values in other bases:

Hexadecimal	0	0	1	9			
Binary	0000	0000	0001	1001			
Decimal	25						

Source: http://www.zvon.org/tmRFC/RFC1475/Output/chapter4.html

IP > TCP PDU > *Sequence Number* for the selected **SMTP PDU**

Field Name: Sequence Number

Purpose and Definition:

TCP is responsible for ensuring that all IP packets sent are actually received. When an application's data is packaged into IP packets, TCP will give each IP packet a sequence number. Once all the packets have arrived at the receiving computer, TCP uses the number in this 32-bit field to ensure that all of the packets actually arrived and are in the correct sequence.

Field Key: Not applicable

Data value (decimal): 2069207327

Hexadecimal	7	В	5	5	9	9	1	F	
Binary	0111	1011	0101	0101	1001	1001	0001	1111	
Decimal	123		85		153		31		
ASCII	-	{	J	U		\bigstar		©	

IP > TCP PDU > *Acknowledgement Number* for the selected **SMTP PDU**

Field Name: Acknowledgement Number

Purpose and Definition:

This number is used by the receiving computer to acknowledge which packets have successfully arrived. This number will be the sequence number of the next packet the receiver is ready to receive.

Field Key: Not applicable

Data value (decimal): 3827794966

Hexadecimal	Е	4	2	7	8	4	1	6
Binary	1110	0100	0010	0111	1000	0100	0001	0110
Decimal	22	28	39		132		22	

IP > TCP PDU > Header Length or Offset for the selected **SMTP PDU**

Field Name: Header Length or Offset

Purpose and Definition:

This is identical in concept to the header length in an IP packet, except this time it indicates the length of the TCP header.

Field Key: Not applicable

Data value (bytes): 32

Hexadecimal	8	0			
Binary	1000	0000			
Decimal	128				

IP > TCP PDU > *Reserved* for the selected SMTP PDU

Field Name: Reserved

<u>**Purpose and Definition:**</u> These 6 bits are unused and are always set to 0.

Field Key: Not applicable

Data value (binary): 0000 00

Hexadecimal	0	0	0	0	0	0
Binary	0000	0000	0000	0000	0000	0000
Decimal	0		()	()

IP > TCP PDU > *Control Flags* for the selected **SMTP PDU**

Field Name: Control Flags

Purpose and Definition:

Every TCP packet contains this 6-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key:

- Urgent (URG)
- Acknowledgement (ACK)
- Push (PSH)
- Reset (RST)
- Synchronize (SYN)
- Finish (FIN)

Data value (binary): 01 1000

Data values in other bases: Not applicable

IP > TCP PDU > *Window Size* for the selected **SMTP PDU**

Field Name: Window Size

Purpose and Definition:

Every TCP packet contains this 16-bit value that indicates how many octets it can receive at once. When IP packets are received, they are placed in a temporary area of RAM known as a buffer until the receiving computer has a chance to process them; this value represents how big a buffer the receiving host has made available for this temporary storage of IP packets.

Field Key: Not applicable

Data value (decimal): 32120

Hexadecimal	7	D	7	8
Binary	0111	1101	0111	1000
Decimal	12	25	12	20

IP > TCP PDU > *Checksum* for the selected **SMTP PDU**

Field Name: Checksum

Purpose and Definition:

Unlike IP, TCP is responsible for ensuring that the entire IP packet arrived intact. TCP will run a CRC on the entire IP packet (not just the header) and place the resulting checksum in this field. When the IP packet is received, TCP re-runs the CRC on the entire packet to ensure the checksum is the same.

Field Key: Not applicable

Data value (hexadecimal): 72 B5

Hexadecimal	7	2	В	5
Binary	0111	0010	1011	0101
Decimal	11	14	18	31

IP > TCP PDU > *Urgent Pointer* for the selected **SMTP PDU**

Field Name: Urgent Pointer

Purpose and Definition:

If the Urgent flag is set to on, this value indicates where the urgent data is located.

Information Key: Not applicable

Data value: Not applicable

Data values in other bases: Not applicable

IP > TCP PDU > *Options and Padding* for the selected SMTP PDU

Field Name: Options and Padding

Purpose and Definition:

Like IP options, this field is optional and represents additional instructions not covered in the other TCP fields. Again, if an option does not fill up a 32-bit word, it will be filled in with padding bits.

Field Key: Not applicable

Data value (hexadecimal): 01 01 08 0A 07 AE F6 75 00 21 66 A4

Hexadecimal	0	1	0	1	0	8	0	Α	0	7
Binary	0000	0001	0000	0001	0000	1000	0000	1010	0000	0111
Decimal	1		1		8		10			7
ASCII	()	©		©		©		(

Hexadecimal	А	Е	F	6	7	5	0	0	2	1
Binary	1010	1110	1111	0110	0111	0101	0000	0000	0010	0001
Decimal	17	74	246		117		0		3	3
ASCII		Ν	\uparrow		u		C			!

Hexadecimal	6	6	Α	4
Binary	0101	0011	0101	1000
Decimal	10)2	16	54
ASCII		f		Ν

2.9.3 SMTP PDU for the selected SMTP PDU

IP > SMTP Header > *Command* **for the selected SMTP PDU**

<u>RFC Link:</u> <u>http://www.ietf.org/rfc/rfc0821.txt?number=821</u>

Field Name: Command

Purpose and Definition: ASCII messages sent between SMTP hosts.

Field Key:

Command	Description
DATA	Begins message composition.
EXPN <string></string>	Returns names on the specified mail list.
HELO <domain></domain>	Returns identity of mail server.
HELP <command/>	Returns information on the specified command.
MAIL FROM <host></host>	Initiates a mail session from host.
NOOP	Causes no action, except acknowledgement from
	server.
QUIT	Terminates the mail session.
RCPT TO <user></user>	Designates who receives mail.
RSET	Resets mail connection.
SAML FROM <host></host>	Sends mail to user terminal and mailbox.
SEND FROM <host></host>	Sends mail to user terminal.
SOML FROM <host></host>	Sends mail to user terminal or mailbox.
TURN	Switches role of receiver and sender.
VRFY <user></user>	Verifies the identity of a user.

Data value: Content_TEXT\Plain;name="mimetest.txt"

Hexadecimal	4	3	6	F	6	Е	7	4
Binary	0100	0011	0110	1111	0110	1110	0111	0100
Decimal	6	7	1	11	1	10	116	
ASCII	(5	(C	1	1	1	t
Hexadecimal	6	5	6	Е	7	4	2	D
Binary	0110	0101	0110	1110	0111	0100	0010	1101
Decimal	10	01	110		116		45	
ASCII	e		n		t		-	
Hexadecimal	5	4	4	5	5	8	5	4
Binary	0101	0100	0100	0101	0101	1000	0101	0100

Decimal	84		69		88		84	
ASCII	Т		Е		Х]	Γ
Hexadecimal	2	F	5	0	6	С	6	1
Binary	0010	1111	0101	0000	0110	1100	0110	0001
Decimal	4	.7	8	0	1()8	9	7
ASCII	,	/	I]	[6	ı
Hexadecimal	6	9	6	Е	3	В	6	9
Binary	0110	1001	0110	1110	0011	1011	0110	1001
Decimal	1(05	11	10	5	9	11	10
ASCII	-	i	1	1			1	1
Hexadecimal	6	1	6	D	6	5	3	D
Binary	0110	0001	0110	1101	0110	0101	0011	1101
Decimal	9	7	1(109)1	6	1
ASCII	i	a	n	n	(5	=	=
Hexadecimal	2	0	6	3	6	8	6	1
Binary	0010	0000	0110	0011	0110	1000	0110	0001
Decimal	3	2	99		104		9	7
ASCII	c	. (М		Ι		m	
Hexadecimal	2	2	7	4	6	5	7	3
Binary	0010	0010	0111	0100	0110	0101	0111	0011
Decimal	3	4	11	6	101		11	15
ASCII	(e	1	t	е		5	5
Hexadecimal	7	4	2	Е	7	4	7	8
Binary	0111	0100	0010	1110	0111	0100	0111	1000
Decimal	116		4	6	11	16	12	20
ASCII	1	t			t		2	K
Hexadecimal	7	4	2	0				
Rinary				0000	1			
Dinary	0111	0100	0010	0000				
Decimal	0111	0100	0010	2				

IP > SMTP Header > *Message* for the selected **SMTP PDU**

Field Name: Message

<u>**Purpose and Definition:</u>** Response messages consist of a response code followed by explanatory text</u>

Field Key:

Response Code Explanatory Text

211	(Response to system status or help request).
214	(Response to help request).
220	Mail service ready.
221	Mail service closing connection.
250	Mail transfer completed.
251	User not local, forward to <path>.</path>
354	Start mail message, end with <crlf><crlf>.</crlf></crlf>
421	Mail service unavailable.
450	Mailbox unavailable.
451	Local error in processing command.
452	Insufficient system storage.
500	Unknown command.
501	Bad parameter.
502	Command not implemented.
503	Bad command sequence.
504	Parameter not implemented.
550	Mailbox not found.
551	User not local, try <path>.</path>
552	Storage allocation exceeded.
553	Mailbox name not allowed.
554	Mail transaction failed.

<u>Data value:</u> *Not applicable.*

2.10 User Commands – SNMP (AKA "Clickable Buttons")

IP PDU

IP Version Internet Header Length Type of Service Total Length of Ethernet Frame Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source IP Address Destination IP Address Options Data

UDP PDU

Source Port Destination Port Length SNMP Checksum Data

SMTP PDU

Source Port Destination Port Length SNMP Checksum Data

2.10.1 IP PDU for the selected SNMP PDU

IP PDU > *IP Version* for the selected SNMP PDU

Field Name: IP Version

<u>Purpose and Definition</u>: Version is a 4-bit field that indicates the format of the internet header.

Data value (decimal): 4

Hexadecimal	4
Binary	0100
Decimal	4

IP PDU > *Internet Header Length* for the selected SNMP PDU

Field Name: Internet Header Length

Purpose and Definition: The IHL field is a 4-bit field indicating the length of the internet header in 32 bit words, and thus points to the beginning of the data. The minimum value of a correct header is 5.

Field Key: Not applicable

Data value: The value contained in our field is 20 bytes. This is the hexadecimal and decimal value of 5 multiplied by 4 bits.

Hexadecimal	0	5		
Binary	0000	0101		
Decimal	5			

IP PDU > *Type of Service* for the selected SNMP PDU

Field Name: Type of Service

Purpose and Definition: Type of Service is an 8-bit field that provides and indication of the abstract parameters of the quality of service desired. These parameters guide the selection of the actual service parameters when transmitting a datagram through a particular network.

Field Key: The major choice is a three-way tradeoff between low-delay, high-reliability, and high-throughput.

0	1	2	3	4	5	6	7
Precedence			D	Т	R	0	0

Bits 0-2: Precedence

Bit 3: (D) 0 = Normal Delay 1 = Low Delay Bit 4: (T) 0 = Normal Throughput 1 = High Throughput

Bit 5: (R) 0 = Normal Reliability 1 = High Reliability

Precedence:

111 = Network Control	011 = Flash
10 = Internetwork Control	010 = Immediate
101 = CRITIC/ECP	001 = Priority
100 = Flash Overrided	000 = Routine

Data value (hexadecimal): 10

Hexadecimal	1	0	
Binary	0001	0000	
Decimal	16		

IP PDU > *Total Length of Ethernet Frame* for the selected **SNMP PDU**

Field Name: Total Length of Ethernet Frame

<u>Purpose and Definition</u>: Total Length is a 16-bit field that indicates the length of the frame, measured in octets, including internet header and data. The maximum size is 2^{16} -1 or 65,535 octets; however, the recommended maximum size is 576 octets.

Field Key: Not applicable

Data values (decimal): 109

Hexadecimal	6	D
Binary	110	1101
Decimal	10)9

IP PDU > *Identification* for the selected SNMP PDU

Field Name: Identification

<u>Purpose and Definition:</u> Identification is a 16-bit field. An identifying value is assigned by the sender to aid in assembling the fragments of a datagram. The identifier is chosen based on the need to provide a way to uniquely identify the fragments and protocol for the time the datagram or any fragment could be alive in the internet.

Field Key: Not applicable

Data value (hexadecimal): D5 1A

Hexadecimal	D	5	1	А
Binary	1101	0101	0001	1010
IP PDU > *Flags* for the selected SNMP PDU

Field Name: Flags

Purpose and Definition: Flags is a 3-bit field that indicates directions for fragmentation.

Field Key:

Bit 0: reserved, must be 0 Bit 1: (DF) 0 = May Fragment1 = Don't FragmentBit 2: (MF) 0 = Last Fragment1 = More Fragment

Data value (binary): 010

Data values in other bases: Not applicable

IP PDU > *Fragment Offset* for the selected SNMP PDU

Field Name: Fragment Offset

Purpose and Definition: The Fragment Offset is a 13- bit field indicating where in the Ethernet frame this fragment begins. The Fragment Offset is measured in units of 8 octets, and the first fragment has offset 0.

Field Key: Not applicable

Data value (decimal): 0

Data values in other bases: Binary: 0000 0000 0000

IP PDU > *Time to Live* for the selected **SNMP PDU**

Field Name: Time to Live

Purpose and Definition: Time to Live is an 8-bit field that indicates the maximum time the datagram is allowed to remain in the internet. If this field contains the value 0, then the datagram must be destroyed. This field is modified in internet header processing. The time is measure in units of seconds, and is set by the sender to the maximum time the datagram is allowed to be in the internet. This field is decreased at each point that the internet header is processed. The intention is to cause undeliverable packets to be discarded, and to bind the maximum datagram lifetime.

Field Key: Not applicable

Data value (decimal): 64

Hexadecimal	4	0		
Binary	0100	0000		
Decimal	64			

IP PDU > *Protocol* for the selected SNMP PDU

Field Name: Protocol

<u>Purpose and Definition</u>: Protocol is an 8-bit field that indicates the next level protocol that is used in the data portion of the internet diagram.

	Field Key:									
Dec	Hex	Protocol	Dec	Hex	Protocol					
0	00	Reserved	22	16	Multiplexing					
1	01	ICMP	23	17	DCN					
2	02	Unassigned	24	18	TAC Monitoring					
3	03	Gateway-to-Gateway	25-76	19-4C	Unassigned					
4	04	CMCC Gateway Monitoring Message	77	4D	Any local network					
5	05	ST	100	64	SATNET and Backroom EXPAK					
6	06	ТСР	101	65	MIT Subnet Support					
7	07	UCL	102-104	66-68	Unassigned					
10	0A	Unassigned	105	69	SATNET Monitoring					
11	0B	Secure	106	6A	Unassigned					
12	0C	BBN RCC Monitoring	107	6B	Internet Packet Core Utility					
13	0D	NVP	110-113	6E-71	Unassigned					
14	0 E	PUP	114	72	Backroom SATNET Monitoring					
15	0F	Pluribus	115	73	Unassigned					
16	10	Telnet	116	74	WIDEBAND Monitoring					
17	11	XNET	117	75	WIDEBAND EXPAK					
20	14	Chaos	120-376	78-0178	Unassigned					
21	15	User Datagram	377	0179	Reserved					

Data value (hexadecimal): 06

Data values in other bases:

Hexadecimal	1	1
Binary	1	0001
Decimal	1	7

RFC Link: http://www.faqs.org/rfcs/rfc790.html

IP PDU > *Header Checksum* for the selected SNMP PDU

Field Name: Header Checksum

Purpose and Definition: The Header Checksum is a 16-bit field. The Checksum is the 16-bit one's complement sum of all 16-bit words in the header. For purposes of computing the checksum, the initial value of its field is zero. When both header checksums are equal, then the header bits are correct. If either checksums vary, then a new, correct packet will need to be sent.

This is a simple way to compute the checksum and experimental evidence indicates that it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience.

Field Key: Not applicable

Data value (hexadecimal): 22 F0

Hexadecimal	2	2	F	0
Binary	10	0010	1111	0000

IP PDU > *Source Address* for the selected **SNMP PDU**

Field Name: Source Address

<u>Purpose and Definition</u>: The Source Address is a 32-bit field that contains the IP address of the host that sent the IP Packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.39

Data values in other bases:

Hexadecimal	С	0	Α	8	0	0	2	7
Binary	1100	0000	1010	1000	0000	0000	0010	0111
Decimal	192		168		0		39	

.

IP PDU > *Destination Address* for the selected **SNMP PDU**

Field Name: Destination Address

<u>Purpose and Definition</u>: The Destination Address is a 32-bit field that contains the address of the host that is to receive the data contained within the IP packet.

Field Key: Not applicable

Data value (decimal): 192.168.0.143

Hexadecimal	С	0	Α	8	0	0	8	f
Binary	1100	0000	1010	1000	0000	0000	1000	1111
Decimal	192		168		0		143	

2.10.2 UDP PDU for the selected SNMP PDU

IP > UDP PDU > *Source Port* for the selected **SNMP PDU**

RFC Link: http://www.ietf.org/rfc/rfc0768.txt?number=768

Field Name: Source Port

<u>Purpose and Definition</u>: Source Port is an optional field, when meaningful, it indicates the port of the sending process, and may be assumed to be the port to which a reply should be addressed in the absence of any other information. If not used, a value of zero is inserted.

Field Key: Not applicable

Data value (decimal): 161

Hexadecimal	А	1	
Binary	1010	0001	
Decimal	161		

IP > UDP PDU> Destination Port for the selected **SNMP PDU**

Field Name: Destination Port

<u>Purpose and Definition</u>: Destination Port has a meaning within the context of a particular internet destination address.

Field Key: Not applicable

Data value (decimal): 1034

Hexadecimal	40	0A			
Binary	0010	1101			
Decimal	1034				

IP > UDP *Length* for the selected SNMP PDU

Field Name: Length

<u>Purpose and Definition</u>: Length is the length in octets of this user datagram including this header and the data (This means the minimum value of the length is eight).

Field Key: Not applicable

Data value (decimal): 89

Hexadecimal	5	9	
Binary	0101	1001	
Decimal	89		

IP > UDP PDU > *Checksum* for the selected **SNMP PDU**

Field Name: Checksum

<u>Purpose and Definition</u>: Checksum is the 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two octets.

Field Key: Not applicable

Data value (hexadecimal): 9A25

Hexadecimal	9	А	2	5	
Binary	1001	0000	0010	0101	
Decimal	154		37		

IP > UDP PDU > *Data* for the selected SNMP PDU

Field Name: Data

Purpose and Definition:

<u>Field Key:</u> Not applicable

Data value (hexadecimal): see SNMP

Data values in other bases: (ASCII): ↑ Extended ASCII

2.10.3 SNMP PDU for the selected SNMP PDU

IP > **UDP** > **SNMP** Header > *Version* for the selected **SNMP PDU**

Field Name: Version

Purpose and Definition: Version is a 6-bit field that indicates the format of the protocol

Field Key: Not applicable

Data value (hexadecimal): 02 01 00

Hexadecimal	0	2	0	1	0	0	
Binary	0000	0010	0000	0001	0000	0000	
Decimal	2]	l	0		

IP > UDP > SNMP Header > *Community* for the selected **SNMP PDU**

Field Name: Community

Purpose and Definition:

Field Key: Public: all users Private: Selected users

Data value: The value contained in our field determines who view the information

Hexadecimal	0	6	7	0	7	5	6	2	6	С
Binary	0000	0110	0111	0000	0111	0101	0110	0010	0110	1100
Decimal	1		1		8		10		,	7
ASCII	ASCII ©		©		©		C		(

Hexadecimal	6	9	6	3	
Binary	0110	1001	0110	0011	
Decimal	1()5	9	9	
ASCII	1	i	(2	

IP > UDP > SNMP Header > *PDU Type* for the selected SNMP PDU

Field Name: PDU Type

Purpose and Definition: The type of data.

Field Key: Not applicable

Data value (hexadecimal): A2 42

Values in other bases:

Hexadecimal	А	2	4	2		
Binary	1010	0010	0100	0010		
Decimal	16	52	66			
ASCII			В			

IP > UDP > SNMP Header > *Request ID* for the selected SNMP PDU

Field Name: Request ID

<u>Purpose and Definition:</u> ID of the requester.

Field Key: Not applicable

Data value (hexadecimal): 51 EB

Hexadecimal	5	1	Е	В	
Binary	0101	0001	1110	1011	
Decimal	8	1	235		
ASCII	(2	\wedge		

IP > **UDP** > **SNMP** Header > *Error Status* for the selected **SNMP PDU**

Field Name: Error Status

Purpose and Definition: If there is an error, it will show here

<u>Field Key:</u> Not applicable.

Data value: No error

Data values in other bases: Not applicable

IP > UDP > SNMP Header > *Error ID* for the selected SNMP PDU

Field Name: Error Index

Purpose and Definition: How the error is defined.

Field Key: Not applicable.

Data value (hexadecimal): 02 01 00

Data values in other bases:

Hexadecimal	0	2	0	1	0	0
Binary	0000	0010	0000	0001	0000	0000
Decimal	2 1		()		

<u>Programming Hint:</u> The name for this variable in code will be IP_UDP_SNMP_ErrorIndex.

IP > **UDP** > **SNMP** Header > *Object ID* for the selected **SNMP** PDU

Field Name: Object ID

Purpose and Definition: How the packet is identified.

Field Key: Not applicable

Data value: 1.3.6.1.2.1.25.3.5.1.1.1

Hexadecimal	1	3	6	1	2	1	2	5	3	5
Binary	0000	0011	0110	0001	0010	0001	0010	0101	0011	0101
Decimal	1	3	6	1	2	1	37		3	5
ASCII	©	C	C	©	©	©	%	6	©	©

Hexadecimal	1	1	1
Binary	0001	0001	0001
Decimal	1	1	1
ASCII	©	©	©

IP > **UDP** > **SNMP** Header > *Value Integer* for the selected **SNMP PDU**

Field Name: Value Integer

Purpose and Definition: The size of the integer

Field Key: Not applicable.

Data value (hexadecimal): 3

Data values in other bases:

Hexadecimal	3
Binary	11
Decimal	3

<u>Programming Hint</u>: The name for this variable in code will be

IP > **UDP** > **SNMP** Header > *Object ID* for the selected **SNMP** PDU

Field Name: Object ID

Purpose and Definition: How the packet is identified.

Field Key: Not applicable

Data value: 1.3.6.1.2.1.25.3.5.1.1.1

Hexadecimal	1	3	6	1	2	1	25	3	5	1	1	1	
Binary	0001	0011	0110	0001	0010	0001	11001	0011	0101	0001	0001	0001	
Decimal							n/a						

3.0 GUI Testing Checklist

3.1. WINDOWS COMPLIANCE TESTING

3.1.1 For Each Application

- Start Application by Choosing a Protocol by clicking on its corresponding button
- No Login is necessary

3.1.2 For Each Window in the Application

- If Window has a Minimize Button, click it.
- Double Click the Icon to return the Window to its original size.
- The window caption for every application should have the name of the application and the window name especially the error messages. These should be checked for spelling, English and clarity, especially on the top of the screen. Check does the title of the window make sense.
- Check all text on window for Spelling/Tense and Grammar
- If a field is disabled (grayed) then it should not have link within it. It should not be possible to select them with the mouse. Try this for every grayed control.

3.1.3 Command Buttons (AKA "Clickable Buttons")

- Click each button once with the mouse This should activate
- Tab to each button Press SPACE This should activate
- Tab to each button Press RETURN This should activate

The above are **VERY IMPORTANT**, and should be done for **EVERY** command Button.

• Tab to another type of control (not a command button). One button on the screen should be default (indicated by a thick black border). Pressing Return in ANY no command button control should activate it.

3.2 Tester's Screen Validation Checklist

3.2.1 AESTHETIC CONDITIONS:

- 1. Is the general screen background the correct color?
- **2.** Are the field prompts the correct color?
- 3. Are the field backgrounds the correct color?
- 4. In read-only mode, are the field prompts the correct color?
- 5. In read-only mode, are the field backgrounds the correct color?
- 6. Are all the screen prompts specified in the correct screen font?
- 7. Is the text in all fields specified in the correct screen font?
- 8. Are all the field prompts aligned perfectly on the screen?
- 9. Are all the fields edit boxes aligned perfectly on the screen?
- 10. Are all group boxes aligned correctly on the screen?
- 11. Should the screen be resizable?
- **12.** Should the screen be minimizable?

13. Are all the field prompts spelt correctly?

14. Are all character or alphanumeric fields left justified? This is the default unless otherwise specified.

15. Are all numeric fields right justified? This is the default unless otherwise specified.

16. Is all the micro help text spelt correctly on this screen?

17. Is all the error message text spelt correctly on this screen?

18. Is all users input captured in UPPER case or lowercase consistently?

19. Where the database requires a value (other than null) then this should be defaulted into fields.

20. Assure that all windows have a consistent look and feel.

21. Assure that all dialog boxes have a consistent look and feel.

3.2.2 VALIDATION CONDITIONS:

1. Does a failure of validation on every field cause a sensible user error message?

2. Is the user required to fix entries, which have failed validation tests?

3. Have any fields got multiple validation rules and if so are all rules being applied?

4. Is validation consistently applied at screen level unless specifically required at field level?

5. For all numeric fields check whether negative numbers can and should be able to be entered.

6. For all numeric fields check the minimum and maximum values and also some mid-range values allowable?

7. For all character/alphanumeric fields check the field to ensure that there is a character limit specified and that this limit is exactly correct for the specified database size?

8. Do all mandatory fields require user input?

9. If any of the database columns don't allow null values then the corresponding screen fields must be mandatory. (If any field, which initially was mandatory, has become optional then check whether null values are allowed in this field.)

3.2.3 NAVIGATION CONDITIONS:

1. Can the screen be accessed correctly from the GUI?

2. Can the screen be accessed correctly from the toolbar?

3. Can the screen be accessed correctly by clicking on a list control on the previous screen?

4. Can all screens accessible via buttons on this screen be accessed correctly?

5. Can all screens accessible by double clicking on a list control be accessed correctly?

6. Is the screen modal. i.e. Is the user prevented from accessing other functions when this screen is active and is this correct?

7. Can a number of instances of this screen be opened at the same time and is this correct?

3.2.4 DATA INTEGRITY CONDITIONS:

1. Check the maximum field lengths to ensure that there are no truncated characters?

2. Where the database requires a value (other than null) then this should be defaulted into fields. The user must either enter an alternative valid value or leave the default value intact.

3. Check maximum and minimum field values for numeric fields?

4. If numeric fields accept negative values can these be stored correctly on the database and does it make sense for the field to accept negative numbers?

5. If a particular set of data is saved to the database check that each value gets saved fully to the database. i.e. Beware of truncation (of strings) and rounding of numeric values.

3.2.5 MODES (EDITABLE NON-IMPLEMENTED) CONDITIONS:

1. Are the screen and field colors adjusted correctly for those not implemented?

2. Can the screen be accessed from the previous screen?

3. Can all screens available from this screen be accessed?

3.2.6 GENERAL CONDITIONS:

1. Assure that the proper commands and options are in each menu.

2. Ensure the proper usage of the escape key (which is to undo any changes that have been made) and generates a caution message "Changes will be lost – Continue yes/no"

3. Assure that only command buttons, which are used by a particular window, or in a particular dialog box, are present. - i.e. make sure they don't work on the screen behind the current screen.

4. When command buttons is used sometimes and not at other times, assure that it is grayed out when it should not be used.

5. Assure that command button names are not abbreviations.

6. Assure that all field labels/names are not technical labels, but rather are names meaningful to system users.

7. Assure that command buttons are all of similar size and shape, and same font & font size.

8. Assure that each window/dialog box has a clearly marked default value (command button, or other object), which is invoked when the Enter key is pressed.

9. Assure that focus is set to an object/button, which makes sense according to the function of the window/dialog box.

10. Assure consistency of mouse actions across windows.

11. Assure that the color red is not used to highlight active objects (many individuals are red-green color blind).

12. Assure that the user will have control of the desktop with respect to general color and highlighting (the application should not dictate the desktop background characteristics).

13. Assure that the screen/window does not have a cluttered appearance

14. Banner style & size & display exact same as existing windows

15. All fonts to be the same

16. Alt+F4 will close the tabbed window and return you to main screen or previous screen (as appropriate), generating "changes will be lost" message if necessary.

17. Ensure all fields are disabled in read-only mode

3.3 Specific Field Tests

3.3.1 Numeric Fields

Assure that lowest and highest values are handled correctly Assure that invalid values are logged and reported Assure that valid values are handles by the correct procedure Assure that numeric fields with a blank in position 1 are processed or reported as an error Assure that fields with a blank in the last position are processed or reported as an error an error Assure that both + and - values are correctly processed Assure that division by zero does not occur Include value zero in all calculations

Include at least one in-range value

Include maximum and minimum range values

Include out of range values above the maximum and below the minimum Assure that upper and lower values in ranges are handled correctly

3.3.2 Alpha Field Checks

Use blank and non-blank data Include lowest and highest values Include invalid characters & symbols Include valid characters Include data items with first position blank Include data items with last position blank

4.0 Appendix

4.1 Glossary

ASCII:

American Standard Code for Information Interchange: a code for representing English characters as numbers, with each letter assigned a number from 0 to 127.

Attribute:

A named value or relationship that exists for some or all instances of some entity and is directly associated with that instance.

Binary:

Pertaining to a number system that has just two unique digits, 0 and 1. Computers operate on a binary number system.

Code:

The symbolic arrangement of data or instructions in a computer program or the set of such instructions.

Data Flow Diagram:

A graphical notation used to describe how data flows between processes in a system. They are a representation of the functional decomposition of a system.

Decimal:

Refers to numbers in base 10-the numbers we use in everyday life.

Dynamic Combo Menu:

Menu showing all actions possible at the current moment.

Frame:

A feature that divides a browser's window into separate segments that can be scrolled independently of each other; a single step in a sequence of programmed instructions

GUI:

Graphical User Interface: A user interface based on graphics (icons, pictures, and menus) instead of text; uses a mouse as well as a keyboard as an input device.

Gantt Chart:

A chart that depicts progress in relation to time, often used in planning and tracking a project

HTML:

Hypertext Transfer Markup Language: A markup language used to structure text and multimedia documents and to set up hypertext links between documents, used extensively on the World Wide Web.

Hexadecimal:

Refers to the base-16 number system which consists of 16 unique symbols: the numbers 0 to 9 and the letters A to F.

Hypertext:

A computer-based text retrieval system that enables a user to access particular locations in web pages or other electronic documents by clicking on links within specific web pages or documents.

Internet:

An interconnected system of networks that connects computers around the world via the TCP/IP protocol.

Linear Sequential Model:

Sometimes called the *classic life cycle* or the *waterfall model*, this model suggests a systematic, sequential approach to software development that begins at the system level and progresses through analysis, design, coding, testing, and support.

Linux:

A trademark for an open-source version of the UNIX operating system.

Network:

A group of two or more computer systems linked together.

Open-Source:

A method and philosophy for software licensing and distribution designed to encourage use and improvement of software written by volunteers by ensuring that anyone can copy the source code.

PHP:

PHP Hypertext Preprocessor (server-side scripting language)

Packet:

A short block of data transmitted in a packet switching network.

PDU:

Protocol Data Unit: A packet of data passed across a network.

Protocol:

A set of formal rules describing how to transmit data, especially across a network.

Prototype:

An original type, form, or instance serving as a basis or standard for later stages.

RFC:

Request for Comments: One of a long-establish series of numbered Internet informational documents and standards widely followed by commercial software and freeware in the Internet and Unix communities.

Software:

The code executed by a computer, as opposed to the physical device which they run on.

TCP/IP:

Transmission Control Protocol/Internet Protocol: A suite of protocols for communication between computers, used as a standard for transmitting data over networks and as the basis for standard Internet protocols.

UNIX:

A powerful operating system developed at the ATT Bell Laboratories.

Use Case:

The specification of sequences of actions that a system, subsystem, or class can perform by interacting with outside actors.

Visible Analyst:

Project management software used in Computer-Aided Software Engineering (CASE) to create such illustrations as the data flow diagrams.

3.2 Gantt Charts

Fall Gantt Chart:

Spring Gantt Chart:

Mirage Incorporated